Product Datasheet

QSFP-40G-CU5M-C

Huawei® Compatible 40Gb/s SFP+ Direct Attach Cable

 Copper, Passive, 5m
FEATURES

- Compliant with SFF- 8436, SFF-8431, SFF-8432 and SFF-8472
- Up to 10.3125 Gbps data rate per channel
- Up to 7 m transmission
- Operating temperature: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- \quad Single 3.3 V power supply
- RoHS compliant
- Cost-effective copper solution
- Lowest total system power solution
- Lowest total system EMI solution
- Optimized design for Signal Integrity

APPLICATIONS

Data

- Servers
- Networked storage systems
- Routers
- External storage systems
- Data Center networking

Communications

- Switches
- Routers

INDUSTRIAL STANDARDS

- InfiniBand Trade Association (IBTA)
- IEEE802.3ba
- 40Gigabit Ethernet (40G BASE - CR4)

Product Datasheet

DESCRIPTION

ATGBICS QSFP+ (Quad Small Form-factor Pluggable Plus) copper direct-attach cables are suitable for very short distances and offer a highly cost-effective way to establish a 40-Gigabit link between QSFP+ ports of QSFP+ switches within racks and across adjacent racks. These cables are used for 40GbE and Infiniband standards, to maximize performance. QSFP+ are designed to meet emerging data center and high-performance computing application needs for a high-density cabling interconnect system capable of delivering an aggregate data bandwidth of $40 \mathrm{~Gb} / \mathrm{s}$. This interconnect system is fully compliant with existing industry standard specifications such as the QSFP MSA and IBTA (InfiniBand Trade Association). The QSFP+ cables support the bandwidth transmission requirements as defined by IEEE 802.3ba ($40 \mathrm{~Gb} / \mathrm{s}$) and Infiniband QDR ($4 \times 10 \mathrm{~Gb} / \mathrm{s}$ per channel) specifications.

Product Datasheet

QSFP+ Pin Function Definition

Pin	Logic	Symbol	Description
1		GND	Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input
4		GND	Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input
7		GND	Ground
8	LVTTL-I	ModSelL	Module Select
9	LVTTL-I	ResetL	Module Reset
10		Vcc Rx	+3.3V Power Supply Receiver
11	$\begin{gathered} \text { LVCMOS- } \\ \text { I/O } \end{gathered}$	SCL	2-wire serial interface clock
12	LVCMOSI/O	SDA	2-wire serial interface data
13		GND	Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output
19		GND	Ground
20		GND	Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Ground
27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29		Vcc Tx	+3.3V Power supply transmitter
30		Vcc1	+3.3V Power supply

Product Datasheet

31	LVTTL-I	LPMode	Low Power Mode
$\mathbf{3 2}$		GND	Ground
$\mathbf{3 3}$	CML-I	Tx3p	Transmitter Non-Inverted Data Input
$\mathbf{3 4}$	CML-I	Tx3n	Transmitter Inverted Data Input
$\mathbf{3 5}$		GND	Ground
$\mathbf{3 6}$	CML-I	Tx1p	Transmitter Non-Inverted Data Input
$\mathbf{3 7}$	CML-I	Tx1n	Transmitter Inverted Data Input
$\mathbf{3 8}$		GND	Ground

Top Side
Viewed From Top

Bottom Side Viewed From Bottom

Product Datasheet

SFP+ Pin Function Definition

Pin	Logic	Symbol	Description
1		VeeT	Module Transmitter Ground
2	LVTTL-O	Tx_Fault	Module Transmitter Fault
3	LVTTL-I	Tx_Disable	Transmitter disable; Turns off transmitter laser output
4	LVTTL-I/O	SDA	2-wire Serial Interface Data Line (Same as MOD-DEF2 in INF8074i)
5	LVTTL-I/O	SCL	2-wire Serial Interface Clock (Same as MOD-DEF1 in INF-8074i)
6		Mod_ABS	Module Absent, connected to VeeT or VeeR in the module
7	LVTTL-I	RS0	Rate Select 0, optionally controls SFP+ module receiver
8	LVTTL-O	Rx_LOS	Receiver Loss of Signal Indication (In FC designated as Rx_LOS and in Ethernet designated as Signal Detect)
9	LVTTL-I	RS1	Rate Select 1, optionally controls SFP+ module transmitter
10		VeeR	Module Receiver Ground
11		VeeR	Module Receiver Ground
12	CML-O	RD-	Receiver Inverted Data Output
13	CML-O	RD+	Receiver Non-Inverted Data Output
14		VeeR	Module Receiver Ground
15		VccR	Module Receiver 3.3 V Supply
16		VccT	Module Transmitter 3.3 V Supply
17		VeeT	Module Transmitter Ground
18	CML-I	TD+	Transmitter Non-Inverted Data Input
19	CML-I	TD-	Transmitter Inverted Data Input
20		VeeT	Module Transmitter Ground

Product Datasheet

General Product Characteristics

Q/4SFP+ DAC Specifications	Tx \& Rx
Number of Lanes	10.3125 Gbps
Channel Data Rate	0 to $+70^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	3.3 V nominal
Supply Voltage	38 pins edge connector (QSFP+) 20 pins edge connector (SFP+)
Electrical Interface	Serial, I2C
Management Interface	

High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ω	
Insertion loss	SDD21	-17.04			dB	At 5.15625 GHz
Differential Return Loss	SDD11 SDD22			See 1	dB	At 0.05 to 4.1 GHz
			See 2	dB	At 4.1 to 11.1 GHz	
Differential to common mode return loss	SCD11 SCD22					
Common-mode to common- mode output return loss	SCC11 SCC22		-10	dB	At 0.2 to 11.1 GHz	

Notes:

1. Reflection Coefficient given by equation SDD11(dB) $<-12+2 \times$ SQRT (f), with f in GHz
2. Reflection Coefficient given by equation SDD11 (dB) $<-6.3+13 \times \log 10(f / 5.5)$, with f in GHz

Product Datasheet

Mechanical Information

The connector is compatible with the SFF-8436 to SFF-8432 specification

Length (\mathbf{m})	Cable AWG
1	30
3	30
5	26
7	24

Product Datasheet

Regulatory Compliance

Feature	Test Method	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)
Electromagnetic Interference (EMI)	FCC Class B	Compliant with Standards
	CENELEC EN55022 Class B	Typically Show no Measurable Effect from a 10V/m Field Swept from 80 to 1000MHz
RF Immunity (RFI)	IEC61000-4-3	RoHS Directive 2011/65/EU and it's Amendment Directives (EU) $2015 / 863$
RoHS Compliance	REACH Regulation (EC) No 1907/2006	RoHS (EU) 2015/863 compliant
REACH Compliance	REACH (EC) No 1907/2006 compliant	

AWG Information

Cable Length (\mathbf{m})	AWG
$\mathbf{0 . 5}$	30
$\mathbf{1}$	30
$\mathbf{2}$	30
$\mathbf{3}$	$28 / 30$
$\mathbf{4}$	28
$\mathbf{5}$	24
$\mathbf{7}$	24

