Allied Telesis

x310 Series

Stackable Access Switches

The Allied Telesis x310 Series Layer 3 stackable access switches offer an impressive set of features in a high-value package, ideal for applications at the network edge.

Overview

1001001010010

The Allied Telesis x310 Series provide a high performing and scalable access solution for today's networks. With a choice of 24-port and 48-port 10/100BASE-T versions with Gigabit uplinks, Power over Ethernet (PoE), plus the ability to stack up to four units, the x310 Series is perfect for demanding applications at the edge of enterprise networks.

Manageable

The x310 runs the advanced AlliedWare Plus[™] fully featured Operating System delivering a rich feature set and an industry-standard Command Line Interface (CLI). The industry-standard CLI reduces training requirements and is consistent across all AlliedWare Plus devices, simplifying network management.

The built-in, web-based Graphical User Interface (GUI) is an easy-to-use and powerful management tool. With comprehensive monitoring facilities and the ability to view a virtual chassis as a single entity, the GUI is an essential part of network management.

Powerful network management

Meeting the increased management requirements of modern converged networks, Allied Telesis Autonomous Management Framework (AMF) automates everyday tasks including configuration management. The complete network can be managed as a single virtual device with powerful centralized management features. Growing the network can be accomplished with plug-and-play simplicity, and network node recovery is fully zero-touch.

AMF secure mode increases network security with management traffic encryption, authorization, and monitoring.

Reliable

The x310 was designed with reliability in mind, to guarantee the continued delivery of essential services. With the ability to stack up to four devices, maintenance and reconfiguration do not affect network uptime.

Secure

Advanced security features protect the network from the edge to the core. Unprecedented control over user access is provided with Network Access Control (NAC), to mitigate threats to network infrastructure. This ensures the network is accessed only by known users and devices, as each user's adherence to network security policies is checked.Secure access can also be provided for guests.

A secure network environment is guaranteed, with powerful control over network traffic types, secure management options, and other multilayered security features built right into the x310 Series switches.

Future-proof

A future-proof network is ensured with the flexibility of the x310 Series, coupled with the ability to stack multiple units. All x310 models come with a comprehensive IPv6 feature set as standard, to ensure they are ready for future traffic demands.

x310 Series switches are Software Definided Networking (SDN) ready and are able to support OpenFlow v1.3.

ECO friendly

The x310 supports Energy Efficient Ethernet (EEE), which automatically reduces the power consumed by the

switch whenever there is no traffic on a port. This sophisticated feature can

significantly reduce your operating costs, by reducing the power requirements of the switch and any associated cooling equipment.

New Features

- AMF secure mode
- Active Fiber Monitoring
- OpenFlow for SDN
- VLAN Mirroring (RSPAN)
- VLAN ACLs
- ► G.8032 Ethernet Ring Protection
- Ethernet CFM

EPSRing

Key Features

Virtual Chassis Stacking (VCStack™)

Create a VCStack of up to four units with 4 Gbps of stacking bandwidth to each unit. Stacking links are connected in a ring so each device has dual connections to further improve resiliency. VCStack provides a highly available system where network resources are spread out across stacked units, reducing the impact if one of the units fails. Aggregating switch ports on different units across the stack provides excellent network resiliency.

Allied Telesis Autonomous Management Framework (AMF)

- Allied Telesis Autonomous Management Framework (AMF) is a sophisticated suite of management tools that provide a simplified approach to network management. Common tasks are automated or made so simple that the every-day running of a network can be achieved without the need for highly-trained, and expensive, network engineers. Powerful features like centralized management, auto-backup, autoupgrade, auto-provisioning and auto-recovery enable plug-and-play networking and zero-touch management.
- AMF secure mode encrypts all AMF traffic, provides unit and user authorization, and monitors network access to greatly enhance network security.

Ethernet Protection Switching Rings (EPSRing)

EPSRing allows several x310 switches to form a protected ring capable of recovery within as little as 50ms. This feature is perfect for high performance and high availability in enterprise networks.

G.8032 Ethernet Ring Protection

- G.8032 provides standards-based high-speed ring protection, that can be deployed stand-alone, or interoperate with Allied Telesis EPSR.
- Ethernet Connectivity Fault Monitoring (CFM) proactively monitors links and VLANs, and provides alerts when a fault is detected.

Industry-leading Quality of Service (QoS)

Comprehensive low-latency wire-speed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/ max bandwidth profiles. Enjoy boosted network performance and guaranteed delivery of businesscritical Ethernet services and applications.

Loop protection

- Thrash limiting, also known as rapid MAC movement, detects and resolves network loops. It is highly user-configurable - from the rate of looping traffic to the type of action the switch should take when it detects a loop.
- With thrash limiting, the switch only detects a loop when a storm has occurred, which can potentially cause disruption to the network. To avoid this, loop detection works in conjunction with thrash limiting to send special packets that the switch listens for. If a port receives a special packet, you can choose to disable the port, disable the link, or send an SNMP trap.

Power over Ethernet Plus (PoE+)

With PoE, a separate power connection to media endpoints such as IP phones and wireless access points is not necessary. PoE+ reduces costs and provides even greater flexibility, providing the capability to connect devices requiring more power (up to 30 Watts)—for example pan, tilt and zoom (PTZ) security cameras.

Link Layer Discovery Protocol – Media Endpoint Discovery (LLDP – MED)

LLDP-MED extends LLDP basic network endpoint discovery and management functions. LLDP-MED allows for media endpoint specific messages, providing detailed information on power requirements, network policy, location discovery (for Emergency Call Services) and inventory.

Voice VLAN

Voice VLAN automatically separates voice and data traffic into two different VLANs. This automatic separation places delay-sensitive traffic into a voice dedicated VLAN, which simplifies QoS configurations.

sFlow

SFlow is an industry standard technology for monitoring high speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defense against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

Active Fiber Monitoring

 Active Fiber Monitoring prevents eavesdropping on fiber communications by monitoring received

optical power. If an intrusion is detected, the link can be automatically shut down, or an operator alert can be sent.

UniDirectional Link Detection

UniDirectional Link Detection (UDLD) is useful for monitoring fiber-optic links between two switches that use two single-direction fibers to transmit and receive packets. UDLD prevents traffic from being sent across a bad link by blocking the ports at both ends of the link in the event that either the individual transmitter or receiver for that connection fails.

Tri-authentication

Authentication options on the x310 Series also include alternatives to 802.1x port-based authentication, such as web authentication to enable guest access and MAC authentication for end points that do not have an 802.1x supplicant. All three authentication methods—802.1x, MAC-based and Web-based—can be enabled simultaneously on the same port. This is called tri-authentication.

TACACS+ Command Authorization

Centralize control of which commands may be issued by a specific user of an AlliedWare Plus device. TACACS+ command authorization complements authentication and accounting services for a complete AAA solution.

Access Control Lists (ACLs)

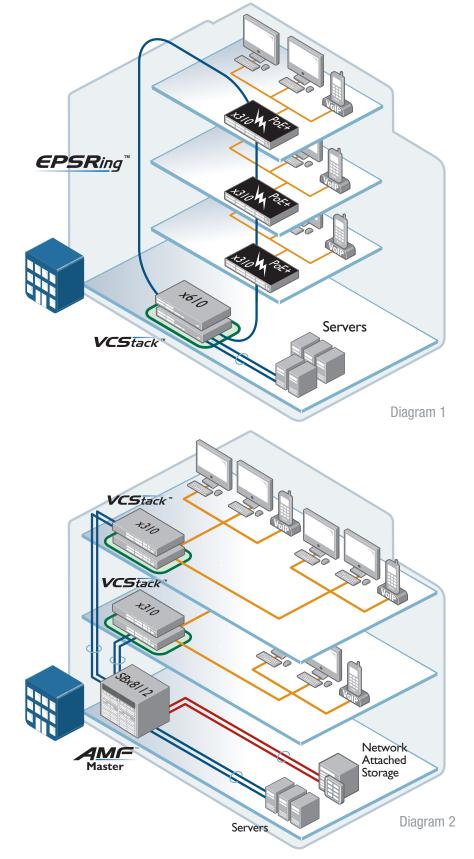
AlliedWare Plus delivers industry-standard Access Control functionality through ACLs. ACLs filter network traffic to control whether routed packets are forwarded or blocked at the port interface. This provides a powerful network security mechanism to select the types of traffic to be analyzed, forwarded, or influenced in some way.

VLAN ACLs

Simplify access and traffic control across entire segments of the network. Access Control Lists (ACLs) can be applied to a Virtual LAN (VLAN) as well as a specific port.

Premium Software License

By default, the x310 Series offers a comprehensive Layer 2 and basic Layer 3 feature set that includes static routing and IPv6 management features. The feature set can easily be elevated to full Layer 3 by applying the premium software license. This adds dynamic routing protocols and Layer 3 multicasting capabilities.


VLAN Mirroring (RSPAN)

VLAN mirroring allows traffic from a port on a remote switch to be analysed locally. Traffic being transmitted or received on the port is duplicated and sent across the network on a special VLAN.

Key Solutions

Network convergence

The convergence of network services in the Enterprise has led to increasing demand for highly available networks with minimal downtime. Diagram 1 shows x310 PoE+ switches with high performance EPSRing connectivity to the x610 VCStack network core. This topology provides recovery in as little as 50ms, if required. PoE+ powers end points without the need for separate power feeds.

Network flexibility

Multiple x310 units can form a single virtual unit with VCStack, as shown in Diagram 2. This greatly simplifies management and provides a scalable and future-proof network. Management of the network is simple, since all SwitchBlade and x-series switches run the advanced AlliedWare Plus operating system, with an industry standard CLI.

Product Specifications

PRODUCT	10/100BASE-T (RJ-45) COPPER PORTS	100/1000 COMBO UPLINK PORTS	1 GIGABIT Stacking Ports	POE CAPABLE PORTS	SWITCHING CAPACITY	FORWARDING RATE
x310-26FT	24	2	2	-	12.8 Gbps	9.5 Mpps
x310-50FT	48	2	2	-	17.6 Gbps	13.1 Mpps
x310-26FP	24	2	2	24	12.8 Gbps	9.5 Mpps
x310-50FP	48	2	2	48	17.6 Gbps	13.1 Mpps

Performance

- 4 Gbps of stacking bandwidth
- Supports 12KB Jumbo frames
- Wirespeed multicasting
- Up to 16K MAC addresses
- ▶ 512MB DDR SDRAM
- ▶ 64MB flash memory
- Packet Buffer memory: x310-26 1.5MB x310-50 - 3MB

Reliability

- Modular AlliedWare Plus operating system
- Full environmental monitoring of PSU, fans, temperature and internal voltages. SNMP traps alert network managers in case of any failure

Power Characteristics

- ► AC Voltage: 90 to 260V (auto-ranging)
- Frequency: 47 to 63Hz

Expandability

Stackable up to four units in a VCStack

Flexibility and compatibility

- Gigabit SFP ports on x310 Series will support any combination of Allied Telesis 100Mbps and 1000Mbps SFP modules listed in this document under Ordering Information
- Port speed and duplex configuration can be set manually or by auto-negotiation

Diagnostic Tools

- Active Fiber Monitoring detects tampering on optical links
- Built-In Self Test (BIST)
- Cable fault locator (TDR)
- UniDirectional Link Detection (UDLD)
- Find-me device locator
- Automatic link flap detection and port shutdown
- Optical Digital Diagnostic Monitoring (DDM)
- Ping polling for IPv4 and IPv6
- Port and VLAN mirroring (RSPAN)
- TraceRoute for IPv4 and IPv6

IPv4 Features

- Black hole routing
 Directed broadcast forwarding
- DNS relav
- Equal Cost Multi Path (ECMP) routing
- Route redistribution (OSPF, RIP)
- Static unicast and multicast routes for IPv4
- ► UDP broadcast helper (IP helper)

IPv6 Features

4 | x310 Series

- DHCPv6 client and relay
- IPv4 and IPv6 dual stack

- IPv6 hardware ACLs and QoS
- Device management over IPv6 networks with SNMPv6, Telnetv6 and SSHv6
- NTPv6 client and server
- Static unicast and multicast routes for IPv6

Management

- Front panel 7-segment LED provides at-a-glance status and fault information
- Allied Telesis Management Framework (AMF) enables powerful centralized management and zero-touch device installation and recovery
- Console management port on the front panel for ease of access
- Eco-friendly mode allows ports and LEDs to be disabled to save power
- Web-based Graphical User Interface (GUI)
- Industry-standard CLI with context-sensitive help
- Powerful CLI scripting engine
- Comprehensive SNMP MIB support for standardsbased device management
- Built-in text editor
- Event-based triggers allow user-defined scripts to be executed upon selected system events
- USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices

Quality of Service (QoS)

- 8 priority queues with a hierarchy of high priority queues for real time traffic, and mixed scheduling, for each switch port
- Limit bandwidth per port or per traffic class down to 64kbps
- Wirespeed traffic classification with low latency essential for VoIP and real-time streaming media applications
- Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- Policy-based storm protection
- Extensive remarking capabilities
- ► Taildrop for queue congestion control
- Strict priority, weighted round robin or mixed scheduling
- IP precedence and DiffServ marking based on layer 2, 3 and 4 headers

Resiliency

- Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- Dynamic link failover (host attach)
- Ethernet Protection Switched Rings (EPSR) with SuperLoop Protection (SLP) and enhanced recovery for extra resiliency
- ► Loop protection: loop detection and thrash limiting
- PVST+ compatibility mode

- STP root guard
- VCStack fast failover minimizes network disruption

Security

- Access Control Lists (ACLs) for IPv4 and IPv6 based on layer 3 and 4 headers, per VLAN or port
- Configurable ACLs for management traffic
- Auth-fail and guest VLANs
- Authentication, Authorisation and Accounting (AAA)
- Bootloader can be password protected for device security
- BPDU protection
- DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
- DoS attack blocking and virus throttling
- Dynamic VLAN assignment
- MAC address filtering and MAC address lock-down
- Network Access and Control (NAC) features manage endpoint security
- Port-based learn limits (intrusion detection)
- Private VLANs provide security and port isolation for multiple customers using the same VLAN
- Secure Copy (SCP)
- Strong password security and encryption
- ► Tri-authentication: MAC-based, web-based and IEEE 802.1x
- ▶ RADIUS group selection per VLAN or port

Environmental specifications

- Operating Temperature Range: 0°C to 40°C (32°F to 104°F) for AT-x310-26FT (fanless)
 - 0°C to 50°C (32°F to 122°F) for AT-x310-26FP/50FP/50FT
- Derated by 1°C per 305 meters (1,000 ft)
- Storage Temperature Range: -25°C to 70°C (-13°F to 158°F)
 Operating Relative Humidity Range:

5% to 90% non-condensing

5% to 95% non-condensing

Operating Altitude:

Safety

60950.1

Certification: UL, cUL

Storage Relative Humidity Range:

3,048 meters maximum (10,000 ft)

Immunity: EN55024, EN61000-3-levels 2

Electrical approvals and compliances

(Harmonics), and 3 (Flicker) - AC models only

Standards: UL60950-1, CAN/CSA-C22.2 No.

60950-1-03, EN60950-1, EN60825-1, AS/NZS

alliedtelesis.com

EMC: EN55022 class A, FCC class A, VCCI class A

x310 Series | Stackable Access Switches

Restrictions on Hazardous

Substances (RoHS) Compliance

- EU RoHS Compliant
- China RoHS Compliant

Country of origin China

Physical specifications

PRODUCT	WIDTH X DEPTH X HEIGHT	MOUNTING	WEIG	PACKAGED DIMENSIONS	
FNUDUGI		MOONTING	UNPACKAGED	PACKAGED	FAGRAGED DIMENSIONS
x310-26FT	340 x 215 x 44 mm (13.38 x 8.46 x 1.73 in)	1RU Rack Mount	2.4 kg (5.3 lb)	3.6 kg (7.9 lb)	48 x 30 x 10 cm (18.9 x 11.8 x 3.9 in)
x310-50FT	440 x 310 x 44 mm (17.32 x 12.20 x 1.73 in)	1RU Rack Mount	4.6 kg (10.2 lb)	6.1 kg (13.5 lb)	56 x 51 x 15 cm (22.1 x 20.1 x 5.9 in)
x310-26FP	440 x 360 x 44 mm (17.32 x 14.17 x 1.73 in)	1RU Rack Mount	5.4 kg (11.9 lb)	6.9 kg (15.2 lb)	56 x 51 x 15 cm (22.1 x 20.1 x 5.9 in)
x310-50FP	440 x 360 x 44 mm (17.32 x 14.17 x 1.73 in)	1RU Rack Mount	5.8 kg (12.8 lb)	7.3 kg (16.1 lb)	56 x 51 x 15 cm (22.1 x 20.1 x 5.9 in)

Power characteristics

	NO POE LOAD		FULL POE+ LOAD			MAX POE	MAX POE	MAX POE+	
PRODUCT	MAX POWER Consumption	MAX HEAT Dissipation	NOISE	MAX POWER Consumption	MAX HEAT Dissipation	NOISE	POWER	PORTS AT 15W PER PORT	PORTS AT 30W PER PORT
x310-26FT	24W	81 BTU/hr	Fanless	-	-	-	-	-	-
x310-50FT	48W	164 BTU/hr	33.4 dBA	-	-	-	-	-	-
x310-26FP	50W	168 BTU/hr	38.2 dBA	460W	308 BTU/hr	60.0 dBA	370W	24	12
x310-50FP	61W	209 BTU/hr	42.8 dBA	472W	349 BTU/hr	60.4 dBA	370W	24	12

Standards and Protocols

AlliedWare Plus Operating System

Version 5.4.7-1

Cryptographic Algorithms

FIPS Approved Algorithms

- Encryption (Block Ciphers):
- ► AES (ECB, CBC, CFB and OFB Modes)
- ▶ 3DES (ECB, CBC, CFB and OFB Modes) Block Cipher Modes:
- ► CCM
- ► CMAC
- ► GCM
- XTS

Digital Signatures & Asymmetric Key Generation:

- DSA
- ► ECDSA

► RSA

Secure Hashing:

SHA-1

- ▶ SHA-2 (SHA-224, SHA-256, SHA-384. SHA-512) Message Authentication:
- ▶ HMAC (SHA-1, SHA-2(224, 256, 384, 512)
- Random Number Generation:
- ▶ DRBG (Hash, HMAC and Counter)

Non FIPS Approved Algorithms

RNG (AES128/192/256) DES MD5

Ethernet

IEEE 802.2 Logical Link Control (LLC) IEEE 802.3 Ethernet IEEE 802.3af Power over Ethernet (PoE) IEEE 802.3at Power over Ethernet plus (PoE+) IEEE 802.3azEnergy Efficient Ethernet (EEE)

IEEE 802.3u 100BASE-X IEEE 802.3x Flow control - full-duplex operation IEEE 802.3z 1000BASE-X

IPv4 Features

RFC 768	User Datagram Protocol (UDP)
RFC 791	Internet Protocol (IP)
RFC 792	Internet Control Message Protocol (ICMP)
RFC 793	Transmission Control Protocol (TCP)
RFC 826	Address Resolution Protocol (ARP)
RFC 894	Standard for the transmission of IP datagrams
	over Ethernet networks
RFC 919	Broadcasting Internet datagrams
RFC 922	Broadcasting Internet datagrams in the
	presence of subnets
RFC 932	Subnetwork addressing scheme
RFC 950	Internet standard subnetting procedure
RFC 951	Bootstrap Protocol (BootP)
RFC 1027	Proxy ARP
RFC 1035	DNS client
RFC 1042	Standard for the transmission of IP datagrams
	over IEEE 802 networks
RFC 1071	Computing the Internet checksum
RFC 1122	Internet host requirements
RFC 1191	Path MTU discovery
RFC 1256	ICMP router discovery messages
RFC 1518	An architecture for IP address allocation with
	CIDR
RFC 1519	Classless Inter-Domain Routing (CIDR)
RFC 1542	Clarifications and extensions for BootP
RFC 1591	Domain Name System (DNS)
RFC 1812	Requirements for IPv4 routers
RFC 1918	IP addressing

- RFC 2581 TCP congestion control

IPv6 Features

RFC 1981	Path MTU discovery for IPv6
RFC 2460	IPv6 specification
RFC 2464	Transmission of IPv6 packets over Ethernet
	networks
RFC 3484	Default address selection for IPv6
RFC 3587	IPv6 global unicast address format
RFC 3596	DNS extensions to support IPv6

RFC 4007	IPv6 scoped address architecture
RFC 4193	Unique local IPv6 unicast addresses
RFC 4213	Transition mechanisms for IPv6 hosts and
	routers
RFC 4291	IPv6 addressing architecture
RFC 4443	Internet Control Message Protocol (ICMPv6)
RFC 4861	Neighbor discovery for IPv6
RFC 4862	IPv6 Stateless Address Auto-Configuration
	(SLAAC)
RFC 5014	IPv6 socket API for source address selection
RFC 5095	Deprecation of type 0 routing headers in IPv6
RFC 5175	IPv6 Router Advertisement (RA) flags option
RFC 6105	IPv6 Router Advertisement (RA) guard

Management

AT Enterprise MIB including AMF MIB and SNMP traps				
Optical DDM MIB				
SNMPv1, v2c	and v3			
IEEE 802.1AE	BLink Layer Discovery Protocol (LLDP)			
RFC 1155	Structure and identification of management information for TCP/IP-based Internets			
RFC 1157	Simple Network Management Protocol (SNMP)			
RFC 1212	Concise MIB definitions			
RFC 1213	MIB for network management of TCP/IP-based Internets: MIB-II			
RFC 1215	Convention for defining traps for use with the SNMP			
RFC 1227	SNMP MUX protocol and MIB			
RFC 1239	Standard MIB			
RFC 1724	RIPv2 MIB extension			
RFC 2578	Structure of Management Information v2 (SMIv2)			
RFC 2579	Textual conventions for SMIv2			
RFC 2580	Conformance statements for SMIv2			
RFC 2674	Definitions of managed objects for bridges			
	with traffic classes, multicast filtering and VLAN extensions			
RFC 2741	Agent extensibility (AgentX) protocol			
RFC 2787	Definitions of managed objects for VRRP			
RFC 2819	RMON MIB (groups 1,2,3 and 9)			
RFC 2863	Interfaces group MIB			
RFC 3176	sFlow: a method for monitoring traffic in switched and routed networks			

x310 Series | Stackable Access Switches

RFC 3411	An architecture for describing SNMP management frameworks
RFC 3412	6
RFC 3412	Message processing and dispatching for the SNMP
RFC 3413	SNMP applications
RFC 3414	User-based Security Model (USM) for SNMPv3
RFC 3415	View-based Access Control Model (VACM) for SNMP
RFC 3416	Version 2 of the protocol operations for the SNMP
RFC 3417	Transport mappings for the SNMP
RFC 3418	MIB for SNMP
RFC 3621	Power over Ethernet (PoE) MIB
RFC 3635	Definitions of managed objects for the
	Ethernet-like interface types
RFC 3636	IEEE 802.3 MAU MIB
RFC 4022	MIB for the Transmission Control Protocol (TCP)
RFC 4113	MIB for the User Datagram Protocol (UDP)
RFC 4188	Definitions of managed objects for bridges
RFC 4292	IP forwarding table MIB
RFC 4293	MIB for the Internet Protocol (IP)
RFC 4318	Definitions of managed objects for bridges with RSTP
RFC 4560	Definitions of managed objects for remote ping,
	traceroute and lookup operations
RFC 5424	Syslog protocol
RFC 6527	Definitions of managed objects for VRRPv3

Multicast Support

Bootstrap Router (BSR) mechanism for PIM-SM					
IGMP query solicitation					
IGMP snoopi	IGMP snooping (IGMPv1, v2 and v3)				
IGMP snoopi	ng fast-leave				
IGMP/MLD n	nulticast forwarding (IGMP/MLD proxy)				
	ng (MLDv1 and v2)				
i ini oni ana	PIM SSM for IPv6				
RFC 1112	······································				
RFC 2236					
	(IGMPv2)				
RFC 2710	Multicast Listener Discovery (MLD) for IPv6				
RFC 2715	Interoperability rules for multicast routing				
	protocols				
RFC 3306	Unicast-prefix-based IPv6 multicast addresses				
RFC 3376	IGMPv3				
RFC 3810	Multicast Listener Discovery v2 (MLDv2) for IPv6				
RFC 3956	Embedding the Rendezvous Point (RP) address				
	in an IPv6 multicast address				
RFC 3973	PIM Dense Mode (DM)				
RFC 4541	IGMP and MLD snooping switches				
RFC 4601	Protocol Independent Multicast - Sparse Mode				
	(PIM-SM): protocol specification (revised)				
RFC 4604	Using IGMPv3 and MLDv2 for source-specific multicast				
BEC 4607	Source-specific multicast for IP				
111 0 4007	oource-specific muticast for in				

Open Shortest Path First (OSPF)

OSPF link-local signaling				
OSPF MD5 authentication				
Out-of-band	LSDB resync			
RFC 1245	OSPF protocol analysis			
RFC 1246	Experience with the OSPF protocol			
RFC 1370	Applicability statement for OSPF			
RFC 1765	OSPF database overflow			
RFC 2328	OSPFv2			
RFC 2370	OSPF opaque LSA option			
RFC 2740	OSPFv3 for IPv6			
RFC 3101	OSPF Not-So-Stubby Area (NSSA) option			
RFC 3509	Alternative implementations of OSPF area			
	border routers			
RFC 3623	Graceful OSPF restart			
RFC 3630	Traffic engineering extensions to OSPF			
RFC 4552	Authentication/confidentiality for OSPFv3			
RFC 5329	Traffic engineering extensions to OSPFv3			
RFC 5340	OSPFv3 for IPv6 (partial support			
	0SPF MD5 a Out-of-band RFC 1245 RFC 1246 RFC 1370 RFC 1765 RFC 2328 RFC 2370 RFC 2740 RFC 3101 RFC 3509 RFC 3623 RFC 3623 RFC 3630 RFC 4552 RFC 5329			

Quality of Service (QoS)

IEEE 802.1p	Priority tagging
RFC 2211	Specification of the controlled-load network
	element service
RFC 2474	DiffServ precedence for eight queues/port
RFC 2475	DiffServ architecture
RFC 2597	DiffServ Assured Forwarding (AF)
RFC 2697	A single-rate three-color marker
RFC 2698	A two-rate three-color marker
RFC 3246	DiffServ Expedited Forwarding (EF)
Resilien	cy Features
ITU-T G.802	3 / Y.1344 Ethernet Ring Protection
	Switching (ERPS)
IEEE 802.1A	XLink aggregation (static and LACP)
IEEE 802.1D	MAC bridges
IEEE 802.1s	Multiple Spanning Tree Protocol (MSTP)
IEEE 802.1w	Rapid Spanning Tree Protocol (RSTP)
	dStatic and dynamic link aggregation

(VRRPv3) for IPv4 and IPv6 Routing Information Protocol (RIP)

RFC 5798 Virtual Router Redundancy Protocol version 3

RFC 1058	Routing Information Protocol (RIP)
RFC 2080	RIPng for IPv6
RFC 2081	RIPng protocol applicability statement
RFC 2082	RIP-2 MD5 authentication
RFC 2453	RIPv2
Security	/ Features
SSH remote	login
SSLv2 and S	SSLv3
TACACS+ A	ccounting, Authentication and Authorization
	(AAA)
IEEE 802.1X	authentication protocols (TLS, TTLS, PEAP
	and MD5)
IEEE 802.1X	multi-supplicant authentication
IEEE 802.1X	port-based network access control
DEC 2560	V 500 Online Cartificate Statue Protocol (009

RFC 2560 X.509 Online Certificate Status Protocol (OCSP)

RFC 2818 HTTP over TLS ("HTTPS")

RFC 2865 RADIUS authentication

RFC 2866 RADIUS accounting

- RFC 2868RADIUS attributes for tunnel protocol supportRFC 2986PKCS #10: certification request syntax
- specification v1.7 RFC 3546 Transport Layer Security (TLS) extensions
- RFC 3579 RADIUS support for Extensible Authentication Protocol (EAP)
- RFC 3580 IEEE 802.1x RADIUS usage guidelines

Ordering Information Feature Licenses

NAME	DESCRIPTION	INCLUDES	STACK LICENSING
AT-FL-x310-01	x310 premium license	 RIP (256 routes) OSPF (256 routes) PIMv4-SM, DM and SSM EPSR master RIPng (256 routes) OSPFv3 (256 routes) PIMv6-SM and SSM VRRP UDLD 	 One license per stack member
AT-FL-x310-0F13-1YR	OpenFlow license	► OpenFlow v1.3 for 1 year	Not supported on a stack
AT-FL-x310-0F13-5YR	OpenFlow license	OpenFlow v1.3 for 5 years	Not supported on a stack
AT-FL-x310-8032	ITU-T G.8032 license	G.8032 ring protectionEthernet CFM	 One license per stack member

RFC 4252 Secure Shell (SSHv2) authentication protocol RFC 4253 Secure Shell (SSHv2) transport layer protocol Secure Shell (SSHv2) connection protocol RFC 4254 RFC 5246 Transport Layer Security (TLS) v1.2 X.509 certificate and Certificate Revocation RFC 5280 List (CRL) profile RFC 5425 Transport Layer Security (TLS) transport mapping for Syslog RFC 5656 Elliptic curve algorithm integration for SSH RFC 6125 Domain-based application service identity within PKI using X.509 certificates with TLS RFC 6614 Transport Layer Security (TLS) encryption for RADIUS RFC 6668 SHA-2 data integrity verification for SSH Services RFC 854 Telnet protocol specification RFC 855 Telnet option specifications RFC 857 Telnet echo option RFC 858 Telnet suppress go ahead option RFC 1091 Telnet terminal-type option RFC 1350 Trivial File Transfer Protocol (TFTP) RFC 1985 SMTP service extension RF

RFC 3748 PPP Extensible Authentication Protocol (EAP)

Secure Shell (SSHv2) protocol architecture

RFC 4251

RFC 2049	MIME
RFC 2131	DHCPv4 (server, relay and client)
RFC 2132	DHCP options and BootP vendor extensions
RFC 2616	Hypertext Transfer Protocol - HTTP/1.1
RFC 2821	Simple Mail Transfer Protocol (SMTP)
RFC 2822	Internet message format
RFC 3046	DHCP relay agent information option (DHCP
	option 82)
RFC 3315	DHCPv6 client
RFC 3993	Subscriber-ID suboption for DHCP relay agent
	option
RFC 4330	Simple Network Time Protocol (SNTP)
	version 4
RFC 5905	Network Time Protocol (NTP) version 4

VLAN Support

IEEE 802.1Q Virtual LAN (VLAN) bridges IEEE 802.1v VLAN classification by protocol and port IEEE 802.3acVLAN tagging

Voice over IP (VoIP)

LLDP-MED ANSI/TIA-1057 Voice VLAN

x310 Series | Stackable Access Switches

Switches

AT-x310-26FT-xx

24-port 10/100BASE-T switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

AT-x310-50FT-xx

48-port 10/100BASE-T switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

AT-x310-26FP-xx

24-port 10/100BASE-T PoE+ switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

AT-x310-50FP-xx

48-port 10/100BASE-T PoE+ switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

Where xx = 10 for US power cord

20 for no power cord 30 for UK power cord 40 for Australian power cord 50 for European power cord

SFP modules

AT-SPFX/2 100FX multi-mode 1310nm fiber up to 2km

AT-SPFX/15 100FX single-mode 1310nm fiber up to 15km

AT-SPFXBD-LC-13 100BX Bi-Di (1310nmTx,1550nm Rx) fiber up to 10km

AT-SPFXBD-LC-15

100BX Bi-Di (1550nm Tx,1310nm Rx) fiber up to 10km

AT-SPSX 1000SX GbE multi-mode 850nm fiber up to 550m

AT-SPSX/I

1000SX GbE multi-mode 850nm fiber up to 550m industrial temperature

AT-SPEX 1000X GbE multi-mode 1310nm fiber up to 2km

AT-SPLX10 1000LX GbE single-mode 1310nm fiber up to 10km

AT-SPLXIO/I 1000LX GbE single-mode 1310nm fiber up to 10km industrial temperature

AT-SPBDI0-13

1000LX GbE Bi-Di (1310nm Tx, 1490nm Rx) fiber up to 10km

AT-SPBDI0-14

1000LX GbE Bi-Di (1490nm Tx, 1310nm Rx) fiber up to 10km

AT-SPLX40

1000LX GbE single-mode 1310nm fiber up to 40km

AT-SPZX80 1000ZX GbE single-mode 1550nm fiber up to

80km

AT-SPBD20-13/I

1000BX GbE Bi-Di (1310 nm Tx, 1550 nm Rx) fiber up to 20 km $\,$

AT-SPBD20-14/I

1000BX GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 20 km

AT-SP10TW1 1 meter SFP direct attach cable

AT-SP10TW3 3 meter SFP direct attach cable

AT-SP10TW7

7 meter SFP direct attach cable

(Note that any Allied Telesis direct attach cable can also be used for stacking)

Allied Telesis

NETWORK SMARTER

 North America Headquarters
 19800 North Creek Parkway
 Suite 100
 Bothell
 WA 98011
 USA
 T: +1 800 424 4284
 F: +1 425 481 3895

 Asia-Pacific Headquarters
 11 Tai Seng Link
 Singapore
 534182
 T: +65 6383 3832
 F: +65 6383 3830

 EMEA & CSA Operations
 Incheonweg 7
 1437 EK Rozenburg
 The Netherlands
 T: +31 20 7950020
 F: +31 20 7950021

alliedtelesis.com

© 2017 Allied Telesis, Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners. 617-000510 RevT