

FCC SDOC TEST REPORT

Applicant	:	Kaijet Technology International Corporation .
Address	:	8F.,No109,Zhongcheng Rd.,Tucheng Dist., New Taipei City 236, Taiwan R.O.C.
Equipment	:	USB 4K ULTRA HD WebCam
Model No.	:	JVCU435
Trade Mark	:	j5create
Standard	:	ANSI C63.4 FCC Part 15 Subpart B

I HEREBY CERTIFY THAT :

The sample was received on Dec. 18, 2020 and the testing was carried out on Dec. 21, 2020 at Cerpass Technology (Dong Guan) Co., Ltd., The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology (Dong Guan) Co., Ltd., the test report shall not be reproduced except in full.

Approved by:

Win. Li

Leevin Li Supervisor of EMC Testing Dept.

Contents

1.	Summ	ary of Test Procedure and Test Result	4
	1.1.	Applicable Standards	4
2.	Test C	onfiguration of Equipment under Test	5
	2.1.	Feature of Equipment under Test	5
	2.2.	Test Manner	5
	2.3.	Description of Support Systems	6
	2.4.	General Information of Test LAB	7
	2.5.	Measurement Uncertainty	7
3.	Test of	f Conducted Emission	8
	3.1.	Test Limit	8
	3.2.	Test Procedures	8
	3.3.	Typical test Setup	9
	3.4.	Measurement Equipment	9
	3.5.	Test Result and Data	10
	3.6.	Test Photographs	12
4.	Test of	f Radiated Emission	13
	4.1.	Test Limit	13
	4.2.	Test Procedures	14
	4.3.	Typical test Setup	15
	4.4.	Measurement Equipment	17
	4.1.	Test Result and Data (Below 1GHz)	18
	4.2.	Test Result and Data (Above 1GHz)	20
	4.3.	Test Photographs (Below 1GHz)	22
	4.4.	Test Photographs (Above 1GHz)	23
5.	EUT P	hotographs	24

History of this test report

■ ORIGINAL.

□ Additional attachment as following record:

Version	Date	Description
Rev 01	Dec. 25, 2020	Initial Issue

Repo	rt Type	Description
	Original report	NA
	Derivative Report	NA

1. Summary of Test Procedure and Test Result

1.1. Applicable Standards

FCC

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4 – 2014 and the energy emitted by this equipment was passed Part 2, Part 15, CISPR PUB. 22.

The energy emitted by this equipment was passed both Radiated and Conducted Emissions Class **B** limits.

Test Item	Normative References	Test Result
Conducted Emission	ANSI C63.4-2014,	PASS
	FCC Part 15 Subpart B	PA00
Radiated Emission	ANSI C63.4-2014	
Radiated Emission	FCC Part 15 Subpart B	PASS

Note: Deviations Yes □ No ■

2. Test Configuration of Equipment under Test

2.1. Feature of Equipment under Test

Product Name:	USB 4K ULTRA HD WebCam
Model Name:	JVCU435
Model Discrepancy:	N/A
Power supply	DC 5V / 500mA ±15mA
EUT Highest Frequency:	>108MHz

Note: Please refer to user manual.

2.2. Test Manner

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4.
- b. The complete test system included support units and EUT for EMI test.
- c. The test modes of Conducted Emission and Radiated Emission test as follow: Conducted Emission for AC main power / Radiated Emissions

Test Mode 1 REC mode for 3840*2160

Test Mode 2 REC mode for 1920*1080

Test Mode 3 REC mode for 640*360

The "Test Mode 1" generated the worst test result; it was reported as final data

The maximum operating frequency is above 108MHz, the test frequency range is from 30MHz to 18GHz.

Device	Manufacturer	Model No.	Description
NB	DELL	PCG-71811P	R33021
Printer	ZEBRA	TLP2824 plus	N/A
HDD	Toshiba	USB 3.0 HDD	N/A
Mouse	DELL	OXN967	R41108
Use Cable	•		
Cable	Quantity		Description
DC Cable	1		1.75m Non Shielding with one Core
USB Printer Cable	1		1.8m Non Shielding
USB HDD Cable	1		1.0m Shielding
USB Mouse Cable	1		1.8m Non Shielding

2.3. Description of Support Systems

2.4. General Information of Test LAB

	Cerpass Technology Corporation(Cerpass Laboratory)
Test Site	Address: Room 102, No. 5, Xing'an Road, Chang'an Town, Dongguan City, Guangdong Province Tel: +86-769-8547-1212 Fax: +86-769-8547-1912

2.5. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Conducted Emission	1
The measurement u	ncertainty is evaluated as ± 2.88 dB.
Radiated Emission	
(9KHz -30MHz)	The measurement uncertainty is evaluated as ±2.15dB.
(30MHz -200MHz)	The measurement uncertainty is evaluated as ±3.90dB.
(200M-1000M)	The measurement uncertainty is evaluated as ±4.95dB.
(1000M-6000M)	The measurement uncertainty is evaluated as ±3.24dB.
(6000M-18000M)	The measurement uncertainty is evaluated as ±3.22dB.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. Test of Conducted Emission

3.1. Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2014. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in ANSI C63.4-2014. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Conducted Emission Limits:

Frequency range	Class A E	quipment	Class B E	quipment
(MHz)	Quasi Peak	Average	Quasi Peak	Average
0.15 to 0.50	79	66	66 to 56*	56 to 46*
0.50 to 5	73	60	56	46
5. to 30.	73	60	60	50

*The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

3.2. Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

3.3. Typical test Setup

3.4. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
Test Receiver	R&S	ESCI	100564	2020.01.07	2021.01.06
LISN	SCHWARZBECK	NSLK 8127	8127748	2020.01.07	2021.01.06
LISN	SCHWARZBECK	NSLK 8127	8127749	2020.01.07	2021.01.06
ISN	TESEQ	ISN T800	42809	2020.05.18	2021.05.17
Pulse Limiter with 10dB Attenuation	SCHWARZBECK	VTSD 9561-F	9561-F106	2020.01.07	2021.01.06
Temperature/ Humidity Meter	mingle	ETH529	N/A	2020.01.08	2021.01.07
Software	FaLa	EZ_EMC	Ver. CT3A1	N/A	N/A

3.5. Test Result and Data

Test M		Test Mode	e 1	Test Engine		Amos	
Power		AC120V		Phase :		LINE	
	erature :	22°C		Humidity :		50%	
Pressu	ure(mbar) :	1002		Date:		Dec. 21, 2020	
100.0	dBuV						
					FCC	Class B Conduction((QP)
	X				FCC C	lass B Conduction(A	VG)
50	×						
	MW WALL		A A A A A A A A A A A A A A A A A A A				
	11. an Arres	have been allowed and the	Walapar Adam	m.		.06 J	. M
~	- White	u Muu auturkeut	A Manager Marth Mar	Mr. wanther	Libral of	1 mar Martin Miller	HAN WANNER
		and the strate where	Area 1	My when and	war war the way was	Mar and a	h peak
				Munumar water of the	A Heleveller the worker w	Westerner Works	AND
				Winnerworked	A where the stand and the second	Wern Wern Conta	MMMMMM AVG
0.0		0.5	(МН	When and we are a set of the set	hard willing half a second	New Marth Conda	
0.0		0.5	(MHz	^{Ve} unnue werschriebed der	5	Martin and Conda	30.000
0.150	Frequency	0.5 Factor	(MHz Reading	:) Level	5 Limit	Margin	30.000
					-	Margin (dB)	
0.150	Frequency	Factor	Reading	Level	Limit		30.000
0.150 No.	Frequency (MHz)	Factor (dB)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	(dB)	30.000 Detector
0.150 No. 1	Frequency (MHz) 0.1819	Factor (dB) 10.13	Reading (dBuV) 42.29	Level (dBuV) 52.42	Limit (dBuV) 64.39	(dB) -11.97	30.000 Detector QP
0.150 No. 1 2	Frequency (MHz) 0.1819 0.1819	Factor (dB) 10.13 10.13	Reading (dBuV) 42.29 24.93	Level (dBuV) 52.42 35.06	Limit (dBuV) 64.39 54.39	(dB) -11.97 -19.33	30.000 Detector QP AVG
0.150 No. 1 2 3	Frequency (MHz) 0.1819 0.1819 0.1824	Factor (dB) 10.13 10.13 10.13	Reading (dBuV) 42.29 24.93 41.67	Level (dBuV) 52.42 35.06 51.79	Limit (dBuV) 64.39 54.39 63.93	(dB) -11.97 -19.33 -12.14	30.000 Detector QP AVG QP
0.150 No. 1 2 3 4	Frequency (MHz) 0.1819 0.1819 0.1924 0.1924	Factor (dB) 10.13 10.13 10.12 10.12	Reading (dBuV) 42.29 24.93 41.67 27.09	Level (dBuV) 52.42 35.06 51.79 37.21	Limit (dBuV) 64.39 54.39 63.93 53.93	(dB) -11.97 -19.33 -12.14 -16.72	30.000 Detector QP AVG QP AVG
0.150 No. 1 2 3 4 5	Frequency (MHz) 0.1819 0.1819 0.1924 0.1924 0.2460	Factor (dB) 10.13 10.13 10.12 10.12 10.28	Reading (dBuV) 42.29 24.93 41.67 27.09 33.38	Level (dBuV) 52.42 35.06 51.79 37.21 43.66	Limit (dBuV) 64.39 54.39 63.93 53.93 61.89	(dB) -11.97 -19.33 -12.14 -16.72 -18.23	30.000 Detector QP AVG QP AVG AVG QP
0.150 No. 1 2 3 4 5 6	Frequency (MHz) 0.1819 0.1819 0.1924 0.1924 0.2460 0.2460	Factor (dB) 10.13 10.13 10.12 10.12 10.28 10.28	Reading (dBuV) 42.29 24.93 41.67 27.09 33.38 20.55	Level (dBuV) 52.42 35.06 51.79 37.21 43.66 30.83	Limit (dBuV) 64.39 54.39 63.93 53.93 61.89 51.89	(dB) -11.97 -19.33 -12.14 -16.72 -18.23 -21.06	30.000 Detector QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5 6 7	Frequency (MHz) 0.1819 0.1819 0.1924 0.1924 0.2460 0.2460 0.2580	Factor (dB) 10.13 10.13 10.12 10.12 10.28 10.28 10.32	Reading (dBuV) 42.29 24.93 41.67 27.09 33.38 20.55 33.04	Level (dBuV) 52.42 35.06 51.79 37.21 43.66 30.83 43.36	Limit (dBuV) 64.39 54.39 63.93 53.93 61.89 51.89 61.49	(dB) -11.97 -19.33 -12.14 -16.72 -18.23 -21.06 -18.13	30.000 Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5 6 7 8	Frequency (MHz) 0.1819 0.1819 0.1924 0.1924 0.2460 0.2460 0.2580	Factor (dB) 10.13 10.13 10.12 10.12 10.28 10.28 10.32 10.32	Reading (dBuV) 42.29 24.93 41.67 27.09 33.38 20.55 33.04 20.48	Level (dBuV) 52.42 35.06 51.79 37.21 43.66 30.83 43.36 30.80	Limit (dBuV) 64.39 54.39 63.93 53.93 61.89 51.89 61.49 51.49	(dB) -11.97 -19.33 -12.14 -16.72 -18.23 -21.06 -18.13 -20.69	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5 6 7 8 9	Frequency (MHz) 0.1819 0.1819 0.1924 0.1924 0.2460 0.2460 0.2580 0.3260	Factor (dB) 10.13 10.13 10.12 10.12 10.28 10.28 10.32 10.32 10.35	Reading (dBuV) 42.29 24.93 41.67 27.09 33.38 20.55 33.04 20.48 28.64	Level (dBuV) 52.42 35.06 51.79 37.21 43.66 30.83 43.36 30.80 38.99	Limit (dBuV) 64.39 54.39 63.93 53.93 61.89 51.89 61.49 51.49 59.55	(dB) -11.97 -19.33 -12.14 -16.72 -18.23 -21.06 -18.13 -20.69 -20.56	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP AVG QP

Note: Level = Reading + Factor

Factor = (LISN or ISN or PLC or Current Probe) Factor + Cable Loss + Attenuator

CERPASS TECHNOLOGY CORP.

Report No.: DEFD2011130

Note: Level = Reading + Factor

Margin = Level – Limit

Factor = (LISN or ISN or PLC or Current Probe) Factor + Cable Loss + Attenuator

3.6. Test Photographs

Front View

Side View

4. Test of Radiated Emission

4.1. Test Limit

Below 1GHz (for digital device)

For unintentional device, according to CISPR PUB.22, for Class B digital devices, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 10 meters shall not exceed the below table.

FREQUENCY (MHz)	dBuV/m (At 10m)				
	Class A Class B				
30 ~ 230	40	30			
230 ~ 1000	47	37			

Limit tables for non-digital device:

Class A Radiated Emission limit at 10m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	90	39
88 - 216	150	43.5
216 – 960	210	46.4
Above 960	300	49.5

Class B Radiated Emission limit at 3m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	100	40
88 - 216	150	43.5
216 – 960	200	46
Above 960	500	54

Above 1GHz(for all device)

	Class A (dBu'	V/m) (At 10m)	Class B (dBuV/m) (At 3m)		
Frequency (MHZ)	Average	Peak	Average	Peak	
Above 1000	49.5	69.5	54	74	

NOTE: (1) The lower limit shall apply at the transition frequencies.

- (2) Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- (3) The measurement above 1GHz is at close-in distances 3m,and determine the limit L2 corresponding to the close-in distance d2 by applying the following relation: L2 = L1 (d1/d2),where L1 is the specified limit in microvolts per metre (uV/m) at the distance d1 (10m), L2 is the new limit for distance d2 (3m).

So the new Class A limit above 1GHz at 3m is as following table:

CERPASS TECHNOLOGY CORP.

	Class A (dBuV/m) (At 3m)				
Frequency (MHZ)	Average	Peak			
Above 1000	60	80			

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.75	30
1.75-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

4.2. Test Procedures

Procedure of Preliminary Test

- The EUT was set up as per the test configuration to simulate typical usage per the user's manual. The EUT was placed on a Turn table top 0.8 meter above ground.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC 120VAC/60Hz power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 or 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 40GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Set the spectrum analyzer/ Receiver in the following setting as: Below 1GHz: RBW=120KHz / VBW=300KHz / Sweep=AUTO Above 1GHz:
 Peak: RBW=1MHz, VBW=3MHz / Sweep=AUTO

Average: RBW=1MHz / VBW=1.6Hz / Sweep=AUTO

• The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 40GHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 or 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. Below 1GHz the Q.P. reading and above 1GHz the Peak and Average reading are presented.
- The test data of the worst-case condition(s) was recorded.

4.3. Typical test Setup

Below 1GHz Test Setup

Above 1GHz Test Setup

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
EMI Test Receiver	R&S	ESCI	100565	2020.06.08	2021.06.07
EMI Test Receiver	R&S	ESCI	100563	2020.06.08	2021.06.07
Loop Antenna	R&S	HFH2-Z2	100150	2020.06.08	2022.06.07
H64 Preamplifier	HP	8447F	3113A05582	2020.03.10	2021.03.09
Bilog Antenna	Sunol Science	JB1	A072414-1	2020.06.08	2022.06.07
Temperature/ Humidity Meter	mingle	ETH529	N/A	2020.01.08	2021.01.07
Software	FaLa	EZ_EMC	Ver. CT3A1	N/A	N/A

4.4. Measurement Equipment

4.1. Test Result and Data (Below 1GHz)

Test Mode:		t Mode 1		est Engineer	An	Amos			
Power :		120V		hase :		VERTICAL			
Temperature :				umidity :		50%			
Pressure(mbar) :	100	2	D	ate:	De	c. 21, 20)20		
80.0 dBuV/m					FCC Class B 3M Radiation Margin -				
0.0		321.00 41		hver-aligner*		806.00	10	00.00 MHz	
0.0	224.00		8.00 515.0	יאילאילי, איזי ^י 0 612.00	709.00	806.00		00.00 MHz	
0.0		321.00 41 Reading		hver-aligner*		806.00 Det.	100 Height	DO.OO MHz Azimuth	
0.0 30.000 127.00	224.00		8.00 515.0	יאילאילי, איזי ^י 0 612.00	709.00				
0.0 30.000 127.00 No. Frequency (MHz)	224.00 Factor	Reading	8.00 515.0 Level	0 612.00	709.00 Margin		Height	Azimuth	
0.0 30.000 127.00	224.00 Factor (dB/m)	Reading (dBuV)	8.00 515.0 Level (dBuV/m)	0 612.00 Limit (dBuV/m)	709.00 Margin (dB)	Det.	Height (cm)	Azimuth (deg)	
0.0 30.000 127.00 No. Frequency (MHz) 1 106.6300	224.00 Factor (dB/m) -10.12	Reading (dBuV) 43.30	8.00 515.0 Level (dBuV/m) 33.18	0 612.00 Limit (dBuV/m) 43.50	709.00 Margin (dB) -10.32	Det. peak	Height (cm) 100	Azimuth (deg) 102	
0.0 127.00 30.000 127.00 No. Frequency (MHz) 1 106.6300 2 149.3100	224.00 Factor (dB/m) -10.12 -9.82	Reading (dBuV) 43.30 40.00	8.00 515.0 Level (dBuV/m) 33.18 30.18	0 612.00 Limit (dBuV/m) 43.50 43.50	709.00 Margin (dB) -10.32 -13.32	Det. peak QP	Height (cm) 100 154	Azimuth (deg) 102 117	
No. Frequency (MHz) 1 106.6300 2 149.3100 3 163.8600	224.00 Factor (dB/m) -10.12 -9.82 -9.33	Reading (dBuV) 43.30 40.00 46.52	8.00 515.0 Level (dBuV/m) 33.18 30.18 37.19	0 612.00 Limit (dBuV/m) 43.50 43.50 43.50	709.00 Margin (dB) -10.32 -13.32 -6.31	Det. peak QP peak	Height (cm) 100 154 200	Azimuth (deg) 102 117 215	

Note: Level = Reading + Factor

Margin = Level – Limit

CERPASS TECHNOLOGY CORP.

Report No.: DEFD2011130

Note: Level = Reading + Factor

Margin = Level – Limit

4.2. Test Result and Data (Above 1GHz)

Test M			est Mode 1 Test Engineer			er	Amos				
Power	:	AC	2120V	F				RTICAL			
	erature :		°C		lumidity :		50%				
Pressu	ıre(mbar) :	10	02)ate:		Dec. 21, 20				
80.0	dBuV/m										
-					FCC CI	ass B Radiati	on (above 1GHz)	peak			
-											
-					FCC (Class B Radia	tion (above 1GH	z) Ava			
ŀ			c		1000			2) (1)			
	2 3 X X X	4 X	56 X								
40											
-											
0.0 10(00.000 2700.00	4400.00	6100.00 78	800.00 9500	.00 11200	.00 12900.	00 14600.00	18	000.00 MHz		
No.	Frequency	Factor	Reading	Level	Limit	Marg	in Det.	Height	Azimuth		
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m	n) (dB))	(cm)	(deg)		
1	1637.500	-6.82	50.65	43.83	74.00	-30.1	7 peak	100	159		
2	2020.000	-4.64	52.22	47.58	74.00	-26.4	2 peak	200	194		
3	2955.000	0.47	47.30	47.77	74.00	-26.2	3 peak	100	215		
4	4570.000	7.79	39.02	46.81	74.00	-27.1	9 peak	100	223		
5	5717.500	9.56	37.13	46.69	74.00	-27.3	1 peak	200	302		
6	5972.500	10.19	37.42	47.61	74.00	-26.3	9 peak	200	314		

Note: Level = Reading + Factor

Margin = Level – Limit

CERPASS TECHNOLOGY CORP.

Report No.: DEFD2011130

Test M	lode:		st Mode 1	Т	est Engin	ieer	Amos				
Power	:		C120V	P	hase :		HORIZ	HORIZONTAL			
	erature :		°C		umidity :		50%				
Pressu	ure(mbar) :	10	02	D	ate:		Dec. 2	1, 2020			
80.0	dBuV/m				FCC (Class B Rac	liation (above	1GHz) peak			
40 _		4 55 X			FCC Class B Radiation (above 1GHz) Avg Image: state st						
0.0											
100	00.000 2700.00	4400.00	6100.00 76	800.00 9500.	.00 1120	0.00 12	900.00 146	00.00	180	000.00 MHz	
No.	Frequency	Factor	Reading	Level	Limit	t Ma	rgin D	et. He	eight	Azimuth	
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/	m) (o	dB)	(0	cm)	(deg)	
1	1765.000	-6.08	52.73	46.65	74.00) -2	7.35 pe	eak 1	00	157	
2	2062.500	-4.46	55.00	50.54	74.00) -2	3.46 pe	eak 2	200	194	
3	2955.000	0.47	44.48	44.95	74.00) -2	9.05 pe	eak 2	200	225	
4	3762.500	4.30	42.58	46.88	74.00) -2	7.12 pe	eak 1	00	239	
5	4910.000	8.43	37.49	45.92	74.00) -2	8.08 pe	eak 1	00	315	
6	5505.000	9.03	38.78	47.81	74.00) -2	6.19 pe	eak 1	00	332	

Note: Level = Reading + Factor Margin = Level – Limit

4.3. Test Photographs (Below 1GHz)

4.4. Test Photographs (Above 1GHz)

Rear View

5. EUT Photographs

1) EUT Photo

