
Dell PowerStore
REST API Developers Guide

Version 4.1

February 2025
Rev. A09

Notes, cautions, and warnings

NOTE: A NOTE indicates important information that helps you make better use of your product.

CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid

the problem.

WARNING: A WARNING indicates a potential for property damage, personal injury, or death.

© 2020 - 2025 Dell Inc. or its subsidiaries. All rights reserved. Dell Technologies, Dell, and other trademarks are trademarks of Dell Inc. or its
subsidiaries. Other trademarks may be trademarks of their respective owners.

Additional Resources.. 5

Chapter 1: Overview.. 6
The PowerStore REST API..6
Resource-oriented architecture and REST... 6
JSON data exchange format.. 7

Chapter 2: REST request components...8
HTTP request headers... 8
URI patterns..9
Request parameters.. 10
REST requests.. 12

Chapter 3: REST responses..14
Response components..14
HTTP and HTTPS response headers...14
HTTP status codes.. 15
JSON collection response body.. 17
JSON instance response body.. 17
JSON create response body... 18
Response with no body.. 18
JSON job response body.. 19
Error response.. 19

Chapter 4: JSON encodings... 21
JSON base value encodings.. 21
JSON list encoding..22

Chapter 5: Managing a REST API session.. 24
Connecting and authenticating..24
Obtaining login session information.. 24
Logging out of the REST API session.. 25

Chapter 6: Querying a resource... 26
Pagination... 26
Retrieving data for multiple occurrences in a collection..27
Retrieving data for a specified resource instance...28
Specifying the attributes to return in a query response..29
Filtering response data...30
Sorting response data.. 32
Including data from a related resource type in a query... 33

Chapter 7: Creating other types of requests..38
Creating a resource instance..38
Modifying a resource instance... 39

Contents

Contents 3

Deleting a resource instance... 41
Performing an instance-level resource-specific action..42
Performing a class-level action..44
Working with asynchronous requests.. 45

Chapter 8: Reference content... 47

4 Contents

Additional Resources
As part of an improvement effort, revisions of the software and hardware are periodically released. Some functions that are
described in this document are not supported by all versions of the software or hardware currently in use. The product release
notes provide the most up-to-date information about product features. Contact your service provider if a product does not
function properly or does not function as described in this document.

NOTE: PowerStore X model customers: For the latest how-to technical manuals and guides for your model, download the

PowerStore 3.2.x Documentation Set from the PowerStore Documentation page at dell.com/powerstoredocs.

Where to get help
Support, product, and licensing information can be obtained as follows:

● Product information—For product and feature documentation or release notes, go to the PowerStore Documentation
page at dell.com/powerstoredocs.

● Troubleshooting—For information about products, software updates, licensing, and service go to Dell Support and locate
the appropriate product support page.

● Technical support—For technical support and service requests, go to Dell Support and locate the Service Requests
page. To open a service request, you must have a valid support agreement. Contact your Sales Representative for details
about obtaining a valid support agreement or to answer any questions about your account.

Additional Resources 5

https://www.dell.com/powerstoredocs
https://www.dell.com/powerstoredocs
https://www.dell.com/support
https://www.dell.com/support

Overview

Topics:

• The PowerStore REST API
• Resource-oriented architecture and REST
• JSON data exchange format

The PowerStore REST API
The PowerStore REST API is a set of resources (objects), operations, and attributes that provide interactive, scripted, and
programmatic management control of the PowerStore cluster. Here are some examples of what you can do with the REST API:

● Provision new cluster components, such as appliances and volumes.
● Configure replication destinations and sessions, and rules.
● Fail over and fail back an appliance.
● Create snapshots for backup purposes.
● Gather metrics to use for historical analysis.
● Gather configuration information and logs to use for auditing and trending analysis.

Reference materials are also available on the appliance in several formats:

● Swagger UI—https://<cluster management ip address>/swaggerui
● JSON—https://<cluster management ip address>/api/rest/openapi.json
The REST API uses a Representational State Transfer (REST) architecture style to expose data. Using a REST API provides the
following advantages:

● Presents a single, consistent interface for managing PowerStore clusters.
● Requires no additional tools, other than standard web browsers or command-line HTTP tools, such as wGET and cURL. For

complex interactions, clients can use any procedural programming language, such as C++ or Java, or scripting language, such
as Perl or Python, to make calls to the REST API.

● Uses well-known HTTP conventions in a standard manner to interact with the appliance.
● Is easy to transport in the network. REST API traffic looks and acts like standard HTTP network traffic, and requires no

special ports open in the firewall or special settings in the switches.

The REST API connection is secured with SSL. The same authentication is used for the REST API and GUI.

Resource-oriented architecture and REST
REST is a client/server architectural style that uses the HTTP protocol in a simple, effective, way. REST is based on the
following principles:

● Application state and functionality are organized into resources. Resources represent physical things, such as a specific
appliance. Resources also represent logical things, such as a specific alert, or collections of entities, such as the volumes or
virtual disks in the system.

● Each resource has a unique Universal Resource Identifier (URI), and each resource instance has a unique ID. For example,
you can identify the alert collection with this path component: /api/rest/alert, and you can identify the alert instance
that has an ID of 00c0d863-8a13-4e98-ba06-c4c3f6da615f with this URI: /api/rest/alert/00c0d863-8a13-4e98-
ba06-c4c3f6da615f.

● Resources share a uniform interface between the client and server through standard HTTP protocol operations. The
PowerStore REST API uses the HTTP GET operation to retrieve data about a resource collection or resource instance,
PATCH to modify a resource instance, POST to create a resource instance, and DELETE to delete a resource instance. The
REST API also uses POST for a limited set of other operations to implement resource-specific actions. Thus, an application
can interact with a resource by knowing the URI pattern, resource identifier, and action required.

1

6 Overview

● Communication between the client and server occurs through HTTP requests and responses. In the PowerStore REST API,
requests and responses represent resource data using JavaScript Object Notation (JSON).

● Each request is stateless, which means that the server does not store application state information. Instead, client requests
contain all the necessary information to service the request.

● Resources in a REST API are self-documenting. A response from the server contains information about the requested
resource in the form of attribute names and values.

JSON data exchange format
JavaScript Object Notation (JSON) is a text-based, platform-independent data-exchange format that is easy for humans and
machines to read and write. It consists of two structures:

● A set of name:value pairs enclosed by curly brackets.
● A list of values enclosed by square brackets. This structure is used when the value in a name:value pair is an array.

The value in a name can be a simple value, such as a string or a number, or it can be either of the structures above (a list of
name:value pairs in curly brackets, or a list of values in square brackets).

The following example shows part of a response body for a GET dns collection request in JSON format. In this content, the
value for the addresses attribute is a list structure:

[
 {
 "id": "DNS1",
 "addresses":
 [
 "10.244.53.108",
 "10.244.53.109"
]
 }
]

For more information about JSON, see json.org.

Overview 7

HTTPS://WWW.JSON.ORG/

REST request components

Topics:

• HTTP request headers
• URI patterns
• Request parameters
• REST requests

HTTP request headers
The following table describes the HTTP request headers that the PowerStore REST API uses. The API uses these headers in
standard ways.

Table 1. HTTP request headers

HTTP header Value Description

Accept: application/json Format of the body content wanted in
the response. All requests use Accept:
application/json, which is the
default and only value accepted.

Content-Type: application/json The body content type of the request.
This header is optional because it is the
default and only supported value.

Accept-Language: en-US The requested locale is mapped to
an available language. Only en-US is
supported.

DELL-EMC-TOKEN: Valid CSRF token value from
authenticated GET request

Before issuing any REST call which
changes the state of the object (such
as POST, PATCH or DELETE) send a
GET request to receive a CSRF token
as response header named DELL-EMC-
TOKEN. Use the value of a token from
the response header that is obtained
from the GET call as a Header value in
the subsequent calls for this session.

Range: <first>-<last> For GET calls only. Part of paging
support. This header requests rows first
through last (optional) of the result set.

X-DELL-MFA-TYPE: SECURID When multifactor authentication (MFA)
is supported, this is the input field for
the second factor method that is used
to authenticate. For PowerStoreOS 3.5,
only SECURID is supported.

X-DELL-MFA-FACTOR-TOKEN: passCodeValue When MFA is supported, this is the input
field for the second factor token that
is used to authenticate. This header is
useful for a client that can supply both
a password and a second factor with no
intermediate steps. X-DELL-MFA-TYPE
is required when this header is passed.

2

8 REST request components

Related references

URI patterns

Request parameters

REST requests

URI patterns

Basic URI patterns

The following table describes the basic URI patterns that the PowerStore REST API supports:

Table 2. Basic patterns in the REST API

URI pattern HTTP Operations Description

Collection type resource URI

/api/rest/<resource_type>
GET Retrieves a list of instances for the specified resource

type.

POST Creates a new instance of the specified resource type,
using data specified in the request body, if allowed.

Instance resource URI

/api/rest/<resource_type>/
<id>

GET Retrieves the specified resource instance.

PATCH Modifies the specified resource instance, if allowed.

DELETE Deletes the specified resource instance, if allowed.

Instance action URI

/api/rest/<resourceType>/
<id>/<action>

POST Performs the operation specified by <action> for the
specified resource instance.

Class-level action URI

/api/rest/<resource_type>/
<action>

POST Performs the operation specified by <action> for the
specified non-singleton resource type.

NOTE: URI parameters cannot contain slashes (/) or other special characters.

Examples

Retrieving all instances of the storage_container resource type

GET /api/rest/storage_container

Retrieving storage_container instance 70b37e07-b7fb-4e69-83ea-928680c4dc31

GET api/rest/storage_container/70b37e07-b7fb-4e69-83ea-928680c4dc31

Creating a new storage container instance

POST /api/rest/storage_container

Deleting storage container instance 70b37e07-b7fb-4e69-83ea-928680c4dc31

DELETE /api/rest/storage_container/70b37e07-b7fb-4e69-83ea-928680c4dc31

Modifying storage container instance 70b37e07-b7fb-4e69-83ea-928680c4dc31

PATCH /api/rest/storage_container/70b37e07-b7fb-4e69-83ea-928680c4dc31

REST request components 9

Mounting storage container instance 70b37e07-b7fb-4e69-83ea-928680c4dc31

POST /api/rest/storage_container/70b37e07-b7fb-4e69-83ea-928680c4dc31/mount

Exchanging SSL certificates with another PowerStore appliance

POST /api/rest/x509_certificate/exchange

Related references

HTTP request headers

Request parameters

REST requests

Request parameters
The PowerStore REST API supports the following request parameters:

Table 3. Request parameters

Request
parameter

Applicable request types Description

select Collection and instance queries Specifies a comma-separated list of attributes to return in a response.
If you do not use this parameter, a query returns the id attribute only.

For more information, see Specifying the attributes to return in a query
response.

<filter
expression>

Collection queries Filters the response data against a set of criteria. Only matching
resource instances are returned. Filtering is case insensitive.

For more information, see Filtering response data.

order Collection queries Specifies how to sort response data. You can sort response data in
ascending or descending order based on one of the following:

● The attributes of the queried resource type.
● The attributes of a resource type that is embedded in the primary

resource type or related through a foreign key.
● A computed attribute.

For more information, see Sorting response data.

async Most non-GET requests Setting this parameter to true (?async=true) runs the request in
the background. Most active management requests (ones that attempt
to change the configuration) support this option. By default, requests
are run synchronously.

For more information, see Working with asynchronous requests.

To use request parameters, append the parameters to the request URI. The first request parameter appended to the URI begins
with a ? character. Subsequent request parameters appended to the URI begin with a & character. You can combine request
parameters and can use them in any order.

Examples

Using the select request parameter

The following request uses a select request parameter to return the values for the id, severity, and description
attributes for all alert instances.

10 REST request components

Table 4. Using the select request parameter

Request
and
response

Request and response example

Request GET https://1.2.3.4/api/rest/alert?select=id,severity,description_l10n

Response

[
 {
 "id":"014f999e-96d8-4f85-853c-c6a0e2569088",
 "severity":"Minor",
 "description_l10n":"Cluster license installation failed due to Fail to
obtain license file. The trial period will expire on 2019-11-27 18:47:26.985,
after which no new storage provisioning will be allowed."
 },
 {
 "id":"2d3cc48d-0296-4d15-afb9-252061cf7df9",
 "severity":"Minor",
 "description_l10n":"Bus 0 enclosure 0 LCCA is initializing."
 },
 {
 "id":"37583ff1-b0fe-41f2-9b3d-e5e5d2e5e525",
 "severity":"Info",
 "description_l10n":"The remote system <undefined> volume discovery or
refresh has failed."
 },
.
.
.

Using a filter expression

The following request uses a filter expression to return the values for alert instances that have the severity attribute set
to Info:

Table 5. Using a filter expression

Request
and
response

Request and response example

Request GET https://1.2.3.4/api/rest/alert?select=id,severity&severity=eq.Info

Response [
 {
 "id":"37583ff1-b0fe-41f2-9b3d-e5e5d2e5e525",
 "severity":"Info"
 },
 {
 "id":"63d21fb9-897d-4d07-983f-0478436755b6",
 "severity":"Info"
 },
 {
 "id":"ab9175c4-1ded-473e-b22d-63ac1154937f",
 "severity":"Info"
 }
.
.
.

Using the order request parameter

The following request uses an order expression to sort alert instances by severity:

REST request components 11

Table 6. Using the order request parameter

Request
and
response

Request and response example

Request GET https://1.2.3.4/api/rest/alert?select=id,severity&order=severity

Response [
 {
 "id":"37583ff1-b0fe-41f2-9b3d-e5e5d2e5e525",
 "severity":"Info"
 },
 {
 "id":"63d21fb9-897d-4d07-983f-0478436755b6",
 "severity":"Info"
 },
 {
 "id":"ab9175c4-1ded-473e-b22d-63ac1154937f",
 "severity":"Info"
 },
 {
 "id":"014f999e-96d8-4f85-853c-c6a0e2569088",
 "severity":"Minor"
 },
 {
 "id":"2d3cc48d-0296-4d15-afb9-252061cf7df9",
 "severity":"Minor"
 },
 {
]

Using the is_async request parameter

The following asynchronous request deletes a local_user instance. The request returns the job ID:

Table 7. Using the is_async request parameter

Request
and
response

Request and response example

Request DELETE https://1.2.3.4/api/rest/local_user/4?is_async=true

Response {
 "id": "1ed0d49e-101b-4b8a-85dc-886f907e8070"
}

Related references

HTTP request headers

URI patterns

REST requests

REST requests
A JSON request body for the REST API consists of a collection of name:value pairs for a single resource type. The request body
has the following syntax:

● For number or boolean values:

{
 <attributeName1>:<value1>,

12 REST request components

 <attributeName2>:<value2>,
 .
 .
 .
}

● For IP, string, or datetime values:

{
 <attributeName1>:"<value1>",
 <attributeName2>:"<value2>",
 .
 .
 .
}

For example, the request body for a create request for the local_user resource type could contain the following values:

{
 "name": "user1",
 "password": "myPassword"
 "role_id": "operator"
 }

Related references

HTTP request headers

URI patterns

Request parameters

REST request components 13

REST responses

Topics:

• Response components
• HTTP and HTTPS response headers
• HTTP status codes
• JSON collection response body
• JSON instance response body
• JSON create response body
• Response with no body
• JSON job response body
• Error response

Response components
Each response to a REST API request consists of a response header, HTTP status code (in the response header), and JSON
response body, if applicable:

● The response header contains metadata about the response being sent.
● The HTTP status code in the response header indicates whether a request is successful or unsuccessful.

○ An HTTP status code in the 2xx family, such as 200 OK or 201 Created, indicates a correctly processed request.

○ An HTTP status code in the 4xx family indicates an error in the request. For example, a 400 status code indicates a badly
formed request, and a 401 status code indicates an authorization error.

○ An HTTP status code in the 5xx family indicates a server failure. For example a 500 status code indicates an internal
server error, and a 503 status code indicates that the REST service is temporarily unavailable.

● The JSON response body varies according to the request type and whether a request was successful. For example, a
collection response body is returned in response to a successful GET collection request, and an instance response body is
returned in response to an instance request.

HTTP and HTTPS response headers
A response from the REST API always includes HTTP or HTTPS response headers that contain metadata about the response
being sent.

NOTE: All HTTP responses from PowerStore now include the Strict-Transport-Security header as part of the HTTP Strict

Transport Security (HSTS) feature. This feature is enabled by default. No configuration is required.

An HTTPS 301 (Permanently Moved) message appears if you try to access management overhttp://. You are then
redirected to an https:// address.

The following HTTP headers appear in REST API responses:

Table 8. HTTP response headers in the REST API

HTTP header Description

Content-Type This header is set to application/json, although it can be application/zip,
document/text, or application/binary.

Content-Length This header refers to the byte length of the HTTP body.

Set-Cookie The login session ticket (auth_cookie) is returned in the first request of the session
and required for all subsequent requests, unless you pass the user ID and password with

3

14 REST responses

Table 8. HTTP response headers in the REST API (continued)

HTTP header Description

each request. Because the API uses cookie-based authentication, the HTTP client must
support cookies in order to use the API.

For more information, see Connecting and authenticating.

DELL-EMC-TOKEN Before issuing any REST call which changes the state of the object (such as POST,
PATCH or DELETE) send a GET request to receive a CSRF token as response header
named DELL-EMC-TOKEN. Use the value of the token from the response header that is
obtained from the GET call as a Header value in the subsequent calls for this session.

Content-Range Paginated responses contain this header, which indicates how many instances were
successful and how many were returned.

HTTPS headers use HSTS to ensure browsers use the more-secure HTTPS when connecting to servers. HSTS and the
Strict-Transport-Security help prevent man-in-the-middle attacks.

This feature only works on browsers. The Strict-Transport-Security header is cached on the browser.

The following HTTPS headers appear in REST API responses:

Table 9. HTTPS response headers in the REST API

HTTPS header Description

Strict-Transport-Security This header indicates that HSTS is being used for security.

Strict-Transport-Security-Options This header allows the following options to be used with the Strict-Transport-
Security header:
● max-age: This directive ensures that the browser redirects any http requests to

https automatically for one year.

● includeSubDomains: This directive states that the HSTS policy applies to all
subdomains as long as those subdomains support https.

HTTP status codes
Every response to a REST API request includes an HTTP status code, which indicates whether the request was successful. If
requests are unsuccessful (that is, if they return 4xx and 5xx HTTP status codes) the system returns a message entity that
describes the problem.

The following table describes the HTTP status codes that apply to the REST API:

Table 10. HTTP status codes in the REST API

Status
code

Name Applies to Description

200 OK All of the following:
● GET requests

● Action PATCH requests with
output data

● Action POST requests with
output data

Successful request.

For a GET request, the response body contains
the requested resource. For an action POST and
PATCH request, the response body contains the
output arguments.

201 Created POST requests for creating
resources

Successful request.

The response body contains the id attribute
only.

202 Accepted Asynchronous POST, PATCH, and
DELETE requests

Request is in process.

The response body is the ID of the job resource
instance executing the request.

REST responses 15

Table 10. HTTP status codes in the REST API (continued)

Status
code

Name Applies to Description

204 No Content Non-GET requests. Successful request.

There is no body content in the response.

206 Partial Content GET requests Successful request.

The response body contains a partial response.
Used for pagination of a long response.

400 Bad Request All requests Problem with request intercepted before
execution.

The system detected a problem with the
request and did not proceed. The request may
have a badly formed URI or badly formed
parameters, headers, or body content.

401 Unauthorized All requests Authentication error.

The username and password combination or the
auth-cookie sent with the request are not valid.

403 Forbidden All requests Authorization error.

The role of the authenticated user does not
have the privilege required to perform the
requested operation.

404 Not Found All requests Resource does not exist.

This can be caused by an invalid ID in an
instance URI.

405 Method Not Allowed All requests Specified resource does not support the
request's operation.

For example, requesting a DELETE on a
hardware resource can cause this error.

416 Range Not
Satisfiable

GET requests The specified range of items is invalid.

The value of the Range header or the URL
parameters limit or offset, or both, are
invalid.

422 Unprocessable
Entity

Non-GET requests Error during execution of the request.

The response body contains an error message
that describes the problem with the request.

Example causes:

● The system is out of space.
● A range error occurred.
● There are inconsistent properties on a POST

or PATCH
500 Internal Server

Error
All requests Internal error.

503 Service
Unavailable

All requests The REST service is temporarily unavailable.
Wait and try the request again.

16 REST responses

JSON collection response body
A JSON collection response body occurs in response to a GET collection request that results in a 200 OK or a 206 Partial
Content HTTP status code. For collections with fewer than 100 elements, the response body for a collection contains the
identifier for all instances in the resource type collection. The response is a JSON array of zero or more instances. Each instance
in the response has one or more attribute name-value pairs. The returned name-value pairs are determined by the select
URI parameter, which defaults to the id attribute. You can specify which attributes to return for each instance by using the
select query parameter. You can specify which instances are returned by filtering the data using an attribute expression as a
query parameter.

Example

GET collection response for an event

The following example illustrates the components of a collection resource. It shows a collection resource returned in response to
a GET collection request for the event resource type. In this example, the query returns the id and severity of each event
in the appliance. Spaces outside the quoted strings are used for readability, and are not significant.

Table 11. GET collection response for an event

Request
and
response

Request and response example

Request GET https://1.2.3.4/api/rest/event?select=id,severity

Response List of all instances in the specified collection that meet the request criteria. The response includes attribute
values as a set of name:value pairs for each returned instance:

[
 {
 "id": "0a739865-a233-4ef0-ae20-6ed014ad06fe",
 "severity": "Minor"
 },
 {
 "id": "51c0db9e-1d2b-4289-97b7-f361d67f7807",
 "severity": "Minor"
 },
 .
 .
 .
]

JSON instance response body
A JSON instance response occurs in response to a GET instance request that results in a 200 Success HTTP status code. By
default, this response body contains only the identifier of the requested resource instance. Use the select request parameter
to specify the additional attribute values to return.

Example

GET instance response for an event

The following example illustrates an instance resource. It shows an instance resource returned in response to a GET instance
request for the event resource type with an identifier of 299a2f56-fea7-4e85-af0d-992294526911. Spaces outside the quoted
strings are used for readability, and are not significant.

REST responses 17

Table 12. GET instance response for an event

Request
and
response

Request and response example

Request GET https://1.2.3.4/api/rest/event/299a2f56-fea7-4e85-af0d-992294526911?
select=id,severity

Response {
 "id": "299a2f56-fea7-4e85-af0d-992294526911",
 "severity": "Info"
}

JSON create response body
A JSON create response body occurs in response to a POST operation for create that results in a 201 Created HTTP return
code. This response body contains the id attribute for the new resource.

Example

Create response for a local_user

The following examples illustrate the components of a minimal instance resource. It shows a minimal instance resource returned
in response to a successful POST request for creating a new local_user resource. The request body contains the arguments
used to populate the new resource.

Table 13. Create response for a local_user

Request
and
response

Request and response example

Request POST https://1.2.3.4/api/rest/local_user

Request
body {

 "name": "User1",
 "password": "myPassword",
 "role_id": "1"
}

Response {
 "id": "4"
}

Response with no body
A response with no body occurs in response to a DELETE request that results in a 204 No Content status code. In this
circumstance, response headers are returned with the empty response body. A response with no body also occurs in response
to an action POST request that does not have output data. This response with no body also occurs in response to a successful
synchronous DELETE instance request that does not have output data and that results in a 204 No Content status code.

18 REST responses

JSON job response body
A JSON response body occurs in response to an asynchronous request that results in a 202 Accepted HTTP return code.
This response body contains the job id. You can query the job resource instance to find out whether the job completed and to
get the response to the asynchronous request. For a description of the job resource type, see the job topic in the Reference
content.

Example

Deletion response for a local_user

The following example returns a job resource instance in response to a successful asynchronous DELETE request.

Table 14. Deletion response for a local_user

Request
and
response

Request and response example

Request DELETE https://1.2.3.4/api/rest/local_user/4?is_async=true

Response {
 "id": "476c903a-1bc2-4370-9a4b-426594ed9604"
}

Error response
An error response is returned in response to an unsuccessful request; that is, a request that returns a 4xx or 5xx HTTP status
code. Unlike the response bodies returned by successful requests, an error response cannot be queried independently.

For a description of the error response attributes, see the Reference content.

Example

Error response for a POST request

The following example returns an error response in response to an unsuccessful POST request:

Table 15. Error response for a POST request

Request,
request
body, and
response

Request, request body, and response example

Request POST https://1.2.3.4/api/rest/volume_group/
257f2597-7c11-46c9-8941-3793e1cb2baa/refresh

Request
body {

"from_object_id": "22f3bf53-ad83-4466-8e5e-5b0fade650da"
}

Response {
 "messages":[
 {
 "code": "0xE0A070020007",
 "severity": "Error",

REST responses 19

Table 15. Error response for a POST request (continued)

Request,
request
body, and
response

Request, request body, and response example

 "message_l10n": "Family mismatch for
snapshot target 257f2597-7c11-46c9-8941-3793e1cb2baa and source 22f3bf53-
ad83-4466-8e5e-5b0fade650da.",
 "arguments": [
 "257f2597-7c11-46c9-8941-3793e1cb2baa",
 "22f3bf53-ad83-4466-8e5e-5b0fade650da"
]
 }
]
}

20 REST responses

JSON encodings

Topics:

• JSON base value encodings
• JSON list encoding

JSON base value encodings
The following table shows the JSON encodings for each base type:

NOTE: A property that has no value appears as the type null.

Table 16. JSON base value encodings

Type name JSON
definition

Format after "<name>": Example Notes

short type: integer
format: int16

<int value> "drive_count":600 N/A

integer type: integer
format: int32

<int value> "answer": 42 N/A

long type: integer
format: int64

<int value> "size": 123456789 N/A

float type: number
format: float

<float value> "progress": 99.9 N/A

double type: number
format:
double

<float value> "throughput":
123456.78

N/A

string type: string <string value> "description":"some
text"

Use \ to escape the quote (")
and control characters.

byte type: string
format: byte

<base64 encoded
character string>

"bitmask":"c3VyZS4=
"

Base64 encoded byte
sequence.

binary type: string
format:
binary

<octet sequence string> "checksum":
"1a2b3c4d1234dcba"

Hex encoded byte sequence.

boolean type: boolean true|false "force":true Case insensitive.

date type: string
format: date

"yyyy-mm-dd" "expiration_date":
"2020-02-02"

As defined by full-date
(RFC3339).

timestamp type: string
format:
timestamp

"hh:mm:ss[.sss]" "daily_start_time":
"03:30:00"

As defined by partial-time
(RFC3339).

4

JSON encodings 21

Table 16. JSON base value encodings (continued)

Type name JSON
definition

Format after "<name>": Example Notes

date-time type: string
format: date-
time

yyyy-mm-
ddThh:mm:ss[.sss]Z

"updated":
"2015-07-14T18:21:3
2.621Z"

As defined by full-date
(RFC3339). All times are
expressed in UTC time. The
optional [.sss] contains
fractional milliseconds.

password type: string
format:
password

<string value> "password":"wordpas
s"

This is a string in the
API and may be presented
differently by a client (to hide
typed input). This is handled
differently on the server (for
example, the values are not
logged).

ip-
address

type: string
format: ip-
address

String containing an IPv4
address, IPv6 address, or
hostname.

"mgmtAddr":"128.222
.1.2"

In this API, some attributes
support IPv4 only, while others
support both IPv4 and IPv6.
Some attributes also support
DNS names.

The help topics for individual
resource types in the
Reference content indicate
which IP address options are
supported by that resource
type.

URI type: string
format: uri

"<url in a string>" "href": "https:/
foo.com/bar.jsp"

N/A

embedded type: string
format:

{ "<propName>":<value1>
, … }

" health":
{ "value":0,
"description":
"OK",
"resolution":"" }

In this example, health
is an embedded type
with three attributes:
value, description, and
resolution.

enum type: string
format:

<string value> "severity":"Error" Enumeration values are
single token strings. Each
enumeration is defined in the
Dell PowerStore REST API
Reference Guide.

id type: string
format:

<string value> "id":"123" <id> value of the referenced
resource instance.

JSON list encoding
A JSON list is a list of values with the following format:

[<value1>, <value2>, <value3>,...]

where:

● Square brackets enclose the list.
● Commas separate each value.
● <value> can be another list or any of the base value encoding formats.

JSON lists can be empty.

22 JSON encodings

Examples

An empty list

"addresses":[]

A list with one value

"addresses":["1.2.3.4"]

A list with three values

"addresses":["1.2.3.4","5.6.7.8","4.3.2.1"]

JSON encodings 23

Managing a REST API session

Topics:

• Connecting and authenticating
• Obtaining login session information
• Logging out of the REST API session

Connecting and authenticating
All requests to the REST API must be authenticated. The REST API uses the standard HTTP Basic access authentication
mechanism to authenticate REST requests. The same users are valid for REST or UI access.

To log in to the REST API server, use the following request components:

Table 17. Request components for connecting and authenticating

Header,
operation
, and URI
pattern

Header, operation, and URI pattern example

Header Accept: application/json
Content-Type: application/json (if the request has a non-empty request body)
Authorization: <base 64 encoding of username and password>

Operation GET, PATCH, POST, or DELETE
URI
pattern

URI pattern for one of the requests listed in the Operation section

NOTE: It is a best practice to maintain a single session when issuing multiple commands. Working within a single session is

more secure. In addition, authenticating with a username and password for every command results in a potentially excessive

number of login audit events in the PowerStore audit log.

To avoid exposure to a cross-site request forgery (CSRF), requests other than GET require the DELL-EMC-TOKEN header.
Before issuing any REST call which changes the state of the object (such as POST, PATCH or DELETE), send a GET request to
receive a CSRF token. Use the value of token from the response header that is obtained from the GET call as a Header value in
the subsequent calls for this session.

The server returns the following in response to a successful login:

● A 200 OK HTTP status code.

● auth_cookie header, which is required to authenticate all subsequent requests, unless you resubmit the user ID and
password with each request. It is also required for logging out of the session.

NOTE: Once the auth_cookie value is set, a browser automatically sets the cookie value for each request.

If the authentication fails, the server returns a 401 Unauthorized HTTP status code.

Obtaining login session information
Query the login_session resource type to find out basic information about the current session. The following table
describes the information that is returned in response to a successful query of the login_session resource type:

5

24 Managing a REST API session

Table 18. Response to a query of the login_session resource type

Attribute Description

id The unique identifier of the login_session resource instance.

user Information about the user logged into this session defined by the local_user resource type.

role_ids Roles for the user who is logged into this session defined by the role resource type.

idle_timeout Number of seconds after last use until this session expires.

is_password_change_r
equired

Indicates whether the password must be changed in order to use this session created for the
built-in admin account.

The values are:

● true - Password must be changed.

● false - Password does not need to be changed.

For information about changing the password for a local user, see the Help topic for the
local_user resource type in the Reference content.

is_built_in_user Indicates whether the user is a system-defined user, such as admin.

Example login session information

[
 {
 "id":"85d0dbfc-d364-47b9-ad90-0fe03efdf860",
 "user"1",
 "role_ids":["1"],
 "idle_timeout":36000,
 "is_password_change_required":false,
 "is_built_in_user":true
 }
]

Logging out of the REST API session
Use the following request components to log out of an existing REST API session:

Table 19. Request components to log out of a REST API session

Header,
operation
, and URI
pattern

Header, operation, and URI pattern example

Header Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Operation POST
URI
pattern https://1.2.3.4/api/rest/logout

The server returns a 204 No Content HTTP status code and an empty response body in response to a successful logout.

Managing a REST API session 25

Querying a resource

Topics:

• Pagination
• Retrieving data for multiple occurrences in a collection
• Retrieving data for a specified resource instance
• Specifying the attributes to return in a query response
• Filtering response data
• Sorting response data
• Including data from a related resource type in a query

Pagination
When you query a resource, the server limits the size of the returned collection by default. This collection is limited to the
number of instances up to a specified pagination limit, which defaults to 100. If the requested collection has fewer instances
than this limit, the response contains the status code 200 OK and all requested instances in its body.

When the requested collection is larger than the limit, the response status code changes to 206 (Partial Content). The
response body contains only the partial collection with a size equal to the pagination limit.

Also, a special header Content-Range is added. This header contains information about how many items were returned, their
position in the whole collection, and the total size of the collection. For example, 0-99/1000 indicates that first 100 items were
returned out of 1000.

Pagination parameters and ordering

You can control the number and position of the returned partial collection by using pagination parameters and ordering.
Pagination parameters can be passed as a URL parameters limit and offset, or in a request header Range, which specifies
indexes of the first and last items in the total collection to return. <add a link to the section about ordering>

Table 20. Pagination parameters

Parameter Type Description

offset integer Use this parameter to specify what the
first item in the returned collection. The
default is 0.

limit integer The maximum number of entries that the
query returns.

The default pagination limit is 100; you can enter values from 1 to 2000. If 0 or less is entered as the value of the limit, the
response is the status code 416 Range Not Satisfiable. A response to a request with a valid limit parameter contains
results up to the specified maximum number of items. If you specify a larger value, the server changes the limit to 2000.

When you limit the number of returned instances, by default, the first instances from the collection are returned based on the
ordering. To get a partial collection starting from an index other than 0, use the URL parameter offset. Its default value is 0;
other valid values are positive integers up to the total size of the collection. Invalid offset values cause the response status code
416 Range Not Satisfiable.

Another way that you can request a specific range of items from a collection is to specify the first and last index of
the instances of the partial collection using the request header Range. For example, a request with the header Range:
"100-199" retrieves the second batch of 100 items in the collection.

6

26 Querying a resource

Retrieving data for multiple occurrences in a
collection
To retrieve data for multiple occurrences of a resource type, use the following request components:

Table 21. Retrieving data for multiple occurrences in a collection

Headers,
operation
, and URI
pattern

Headers, operation, and URI pattern example

Headers Accept: application/json
Authorization: <auth_cookie>

Operation GET
URI
pattern /api/rest/<resource_type>

where <resource_type> is the resource type for the collection you want to return. For additional functionality,
such as filtering instances, you can append one or more request parameters to the URI.

Body Empty.

If the request succeeds, the server returns a 200 OK HTTP status code and a collection resource in the response body. If the
request does not succeed, the server returns a 4xx or 5xx HTTP status code and an error response. If there are no instances in
a collection, the server returns a 200 OK HTTP status code and an empty body containing only [].

By default, the response to a GET collection request includes only the unique identifier for each instance of the specified
resource type. You can use the following request parameters to customize the returned data:

Table 22. Request parameters to customize the returned data

Request parameters Description

select Requests data for a specified set of attributes.

order Specifies how to sort the response data.

<attribute
expression>

Filters the response data against a set of criteria. Only matching resource instances are returned.
Filtering is case insensitive.

limit Limits the maximum number of items in the returned collection (1-2000).

offset Provides an index of the first returned instance.

Retrieving data for all alerts in the system

The following request returns information about all alerts in the system. The select parameter specifies that the values for the
id, severity, and description attributes should be returned. This example shows three returned instances:

Table 23. Retrieving data for all alerts in the system

Header,
request,
and body

Header, request, and body example

Header Accept: application/json

Request GET https://1.2.3.4/api/rest/alert?
select=id,event_code,severity,description_l10n

Request
body

Empty.

Querying a resource 27

Table 23. Retrieving data for all alerts in the system (continued)

Header,
request,
and body

Header, request, and body example

Response
body [

 {
 "id":"014f999e-96d8-4f85-853c-c6a0e2569088",
 "severity":"Minor",
 "description_l10n":"Cluster license installation failed due to Fail to
obtain license file. The trial period will expire on 2019-11-27 18:47:26.985,
after which no new storage provisioning will be allowed."
 },
 {
 "id":"2d3cc48d-0296-4d15-afb9-252061cf7df9",
 "severity":"Minor",
 "description_l10n":"Bus 0 enclosure 0 LCCA is initializing."
 },
 {
 "id":"37583ff1-b0fe-41f2-9b3d-e5e5d2e5e525",
 "severity":"Info",
 "description_l10n":"The remote system <undefined> volume discovery or
refresh has failed."
 }
]

Retrieving data for a specified resource instance
To retrieve data for a specified resource instance, use the following request components:

Table 24. Retrieving data for a specified resource instance

Headers,
operation
, and URI
pattern

Headers, operation, and URI pattern example

Headers Accept: application/json
Authorization: <auth_cookie>

Operation GET
URI
pattern /api/rest/<resource_type>/<id>

where:
● <resource_type> is the resource type of the desired instance.
● <id> is the unique identifier of the desired instance.
For additional functionality, such as returning specific attributes, you can append one or more request parameters
to the URI.

Body Empty.

If the request succeeds, the server returns a 200 OK HTTP status code and an instance resource in the response body. If the
request does not succeed, the server returns a 4xx or 5xx HTTP status code and a message entity in the response body.

By default, the response to a GET instance request includes only the unique identifier (id attribute) of the specified resource
instance. You can use the following request parameters to customize what data is returned:

Table 25. Request parameters to customize the returned data

Request parameter Description

select Requests data for a specified set of attributes.

28 Querying a resource

Example

The following request returns the values for the id, name, and serial_number attributes for the appliance resource
instance that has an id of J8WRPD2.

Table 26. Example of retrieving data for a specified resource instance

Header,
request,
and
response
body

Header, request, and response body example

Header Accept: application/json

Request GET https://1.2.3.4/api/rest/appliance/J8WRPD2?select=id,name,service_tag

Response
body {

 "id": "J8WRPD2",
 "name": "H2025-appliance-1",
 "service_tag": "J8WRPD2"
}

Specifying the attributes to return in a query
response
Use the select request parameter in a collection query to specify the set of attributes to return in a response. If you do not
use this parameter, a query will return the id attribute only.

When you use the select request parameter, you can refer to attributes in a related resource type, as described in the Syntax
section below.

Syntax

As the first parameter on the request URI: ?select=<attr1>,<attr2>,<attr3>...
As a subsequent parameter on the request URI: &select=<attr1>,<attr2>,<attr3>...
where the attributes whose values you want to retrieve are listed in a comma-separated list.

You can use nested notation syntax (<reference_attribute_name>(<attr1?,<attr2>...)) in a select expression
to return the values of attributes from related resource types. A related resource type is a resource type that is either referred
to explicitly in the definition of the target resource type or embedded in the target resource type.

Considerations

The following considerations apply to using the select parameter:

● If a select request is made for an attribute that is not defined on the resource type, the server returns a 400 Bad
Request error.

● If an attribute has a valid, empty string value, the server returns the value as <attribute>:"".

● Although a response normally contains only the requested attributes, this is not guaranteed. You should therefore be
prepared to ignore unrequested properties.

Retrieving the name and create_time for a local_user

The following request retrieves values for the name and create_time attributes in the local_user resource collection:

Querying a resource 29

Table 27. Retrieving the name and create_time for a local_user

Headers,
request,
and
response
body

Headers, request, and response body example

Headers Accept: application/json
Authorization: <auth_cookie>

Request GET https://1.2.3.4/api/rest/local_user?select=name,role_id

Response
body [

 {
 "name": "admin",
 "role_id": "1"
 },
 {
 "name": "stadmin",
 "role_id": "2"
 },
 {
 "name": "vmadmin",
 "role_id": "4"
 }
]

Filtering response data
Use one or more filter expressions in a request parameter to specify matching criteria for a list of resources returned by a
collection query. A filter expression works like an SQL WHERE clause. You specify a filter expression composed of boolean
predicates, and the expression is applied against the attribute values of the requested resource type. Only those instances that
cause the filter expression to evaluate to true are returned in the query response. The system ANDs together multiple filter
expressions.

Filter expressions use operators such as gt, gte, lt, and lte. The interpretation of these operators is type-dependent. For
example, gt used with datetime attributes means the date value to the right of gt must be more recent than the date value
to the left of gt.

Filtering is case insensitive for any property called name.

Using a filter expression can save bandwidth, because the server removes extra data before returning data to the client.
However a filter expression does not reduce the amount of work the server performs to answer the request.

NOTE: Complex requests can be slow or can fail.

Syntax

As the first parameter on the request URI: ?<attribute_name>=<filter_expr>
As a subsequent parameter on the request URI: &<attribute_name>=<filter_expr>
where <filter_expr> is defined by the following syntax :

[not.]<operator>.<filter value> You can use nested notation syntax
(<reference_attribute_name>(<attr1>,<attr2>...)) in a filter expression to filter by attributes from a related
resource type.

NOTE: Some resource types and attributes do not support filtering, which is indicated in their descriptions.

You can also filter by attributes that are not requested in the select URL parameter. A related resource type is a resource type
that is either referred to explicitly in the definition of the target resource type or embedded in the target resource type.

30 Querying a resource

Supported operators

Table 28. Supported operators

Comparator Description Applicable data
types

Example

eq Equal.

Returns true when the expression on the left
of eq equals the expression on the right.

All ?role_id=eq.3
True if the value of role_id is
Operator.

gt Greater than.

Returns true when the expression on the left
of =eq is greater than the expression on the
right.

All ?low_value=gt.5
True if the value of low_value is greater
than 5.

gte Greater than or equal.

Returns true when the expression on the
left of =eq is greater than or equal to the
expression on the right.

All ?software_version=gte.5.3
True if the value of software_version
is greater than or equal to 5.3.

lt Less than

Returns true when the expression on the left
of =eq is less than the expression on the
right.

All ?
modify_time=lt.2018-05-07T17:5
6:28.859+00:00
True if the value of
modify_time is earlier than
2018-05-07T17:56:28.859+00:00.

lte Less than or equal.

Returns true when the expression on the
left of =eq is less than or equal to the
expression on the right.

All ?
modify_time=lte.2018-05-07T17:
56:28.859+00:00
True if the value of modify_time
is 2018-05-07T17:56:28.859+00:00 or
earlier.

neq Not equal.

Returns true when the expression on the left
of =eq is not equal to the expression on the
right.

All ?role_id=neq.3
True if the value of role_id is anything
other than Operator.

ilike Case-insensitive substring match.

Returns true when the expression on the
left of =eq, including its case, matches
the expression on the right. Use * for a
wildcard.

String ?name=ilike.User*
True if the value of name starts with
User.

in One of a list of values.

Returns true when the expression on the left
of =eq matches any value in the comma-
separated list on the right.

All ?role_id=in.
(operator,administrator,servic
e)
True if the value of role_id is
Operator, Administrator, or VM
Administrator.

is Checks for exact equality to null, true, or
false values.

null (All), true,
false (Boolean)

?description=is.null

cs Contains. List of any type ?supported_speeds=cs.
{1_Gbps,10_Gbps}
True if the speeds array contains 1 Gbps
and 10 Gbps.

Querying a resource 31

Table 28. Supported operators (continued)

Comparator Description Applicable data
types

Example

cd Contained in. List of any type ?server_addresses=cd.
{"1.2.3.4","5.6.7.8"}
True if the values in the server addresses
list are all either 1.2.3.4 or 5.6.7.8.

not Negates the operator that follows. All ?resource_type=not.in.
(Operator,Administrator,VM
Administrator)
True if the value of role_id is
not Operator, Administrator, or VM
Administrator.

and All the conditions in the parentheses that
follow must be true in order for the request
to evaluate as true.

NOTE: The default for multiple filters
is to AND them, so the use of and is

optional unless you are using both and
and or in the filter expression.

All ?
and=(size.gt.50,performance_po
licy_id.eq.default_high)
True if the value of size is greater
than 50 MB and the value of
performance_policy is High.

or At least one of the conditions in the
parentheses that follow must be true in
order for the request to evaluate as true.

All ?
or=(size.gt.50,performance_pol
icy_id.eq.default_high)
True if either the value of size is
greater than 50 MB or the value of
performance_policy is High or both.

Sorting response data
Use the order request parameter to specify sort criteria for one attribute in a list of resources returned by a collection query.
The order parameter works like an SQL Order By clause. You can specify one of these sort orders for the attribute:

● asc: (Default) Sorts the response data in ascending order.

● desc: Sorts the response data in descending order.

Sorting is case insensitive for any property called name.

Syntax

As the first parameter on the request URI: ?order=<order_expr>
As a subsequent parameter on the request URI: &order=<order_expr>
where <order_expr> is defined by the following syntax:

prop_expr1[.asc|.desc],[prop_expr2[.asc|.desc]...
where:

● prop_expr1 and prop_expr2 are attribute names that are defined for the resource being queried.

● asc and desc are case insensitive.

Retrieving values for all alerts, sorted by state

The following request retrieves values for the id, description, and alert_state attributes for all alert instances and sorts
this information by alert_state in ascending order.

32 Querying a resource

Table 29. Retrieving values for all alerts and sorting by state

Headers,
requests,
and
response
body

Headers, request, and response body example

Headers Accept: application/json
Authorization: <auth_cookie>

Request GET https://1.2.3.4/api/rest/alert?select=id,description_l10n,state&order=state

Response
body [

 {
 "id": "1bf5e114-b476-492b-a37e-7d9c1b38e7b9",
 "description_l10n": "Firmware version of the rights DAE PSU is no_errors.
Current firmware version is 09.16s.",
 "state": "Active"
 },
 {
 "id": "27f6caef-219a-406c-ad74-2ab801e56b19",
 "description_l10n": "Firmware version of the tops DAE Controller is
no_errors. Current firmware version is 2.30.0s.",
 "state": "Active"
 },
 {
 "id": "0ed1b64a-91aa-444e-a832-cec924e41850",
 "description_l10n": "Port state was changed from downs to ups.",
 "state": "Cleared"
 },
 {
 "id": "d406b80d-db51-4853-a835-23ed5512ae0d",
 "description_l10n": "Port state was changed from downs to ups.",
 "state": "Cleared"
 }
]

Including data from a related resource type in a query
You can extend the scope of a collection query to retrieve data from a related resource type. The REST model describes two
kinds of relations:

● A referenced resource type
● An embedded resource type

Referenced resource types

A referenced resource type describes an instance of a linked object type. This resource type is declared in the REST model as
a reference to an object (for a many-to-one relation) or an array of objects (for a one-to-many or many-to-many relation). To
return information about instances and their related instances, use the following syntax in the select parameter to specify the
wanted attributes from the related resource type:

...<attribute1>,<attribute2>,<related_resource> (id,related_attribute2,
related_attribute3...)

If you omit the list of parameters, only the select attribute and its value are returned for the referenced object:

...<attribute1>,<attribute2>,<related_resource>

Querying a resource 33

Examples

The following queries use the select request parameter to return information about nodes and their related appliances.

Table 30. Example 1: Returning specified parameters for the appliance related to each node

Compone
nt

Details

Headers Accept: application/json
Authorization: <auth_cookie>

Request https://1.2.3.4/api/rest/node?select=id,name,appliance(id,name)

Response
body [

 {
 "id":"N1",
 "name":"H0112-appliance-1-node-A",
 "appliance":
 {
 "id":"A1",
 "name":"H0112-appliance-1"
 }
 },
 {
 "id":"N2",
 "name":"H0112-appliance-1-node-B",
 "appliance":
 {
 "id":"A1",
 "name":"H0112-appliance-1"
 }
 }
]

Table 31. Example 2: Returning only the id parameter for the appliance related to each node

Component Details

Headers Accept: application/json
Authorization: <auth_cookie>

Request https://1.2.3.4/api/rest/node?select=id,name,appliance

Response body [
 {
 "id":"N1",
 "name":"H0112-appliance-1-node-A",
 "appliance":
 {
 "id":"A1"
 }
 },
 {
 "id":"N2",
 "name":"H0112-appliance-1-node-B",
 "appliance":
 {
 "id":"A1"
 }
 }
]

34 Querying a resource

Table 32. Example 3: Returning specified parameters for all nodes related to an appliance

Component Details

Headers Accept: application/json
Authorization: <auth_cookie>

Request https://1.2.3.4/api/rest/appliance?select=id,name,nodes(id,name)

Response body [
 {
 "id":"A1",
 "name":"H0112-appliance-1",
 "nodes":
 [
 {
 "id":"N1",
 "name":"H0112-appliance-1-node-A"
 },
 {
 "id":"N2",
 "name":"H0112-appliance-1-node-B"
 }
]
 }
]

Table 33. Example 4: Returning only the id parameter for all nodes related to an appliance

Component Details

Headers Accept: application/json
Authorization: <auth_cookie>

Request https://1.2.3.4/api/rest/appliance?select=id,name,nodes

Response
body [

 {
 "id":"A1",
 "name":"H0112-appliance-1",
 "nodes":
 [
 {
 "id":"N1"
 },
 {
 "id":"N2"
 }
]
 }
]

Embedded resource types

An embedded resource type describes an instance of nested objects. This resource type is declared in the REST model as a
reference to an object or an array of objects with a special note in its description field.

● Embedded resources cannot be queried without a parent object.
● Embedded resources always return all fields. These objects do not allow the user to select which fields to return.

Querying a resource 35

Use the following syntax in the select parameter to query an embedded resource type:

...<attribute1>,<attribute2>,<embedded_resource>

NOTE: Extending the scope of a collection query is not supported for all resources. Resources that do not support this

functionality include a note in their description stating: Filtering on the fields of this embedded resource
is not supported.

In addition, you can display selected attributes of an embedded resource:

...<attribute1>,<attribute2>,<embedded_resource>-
>>embedded_attribute1,<embedded_resource>->>embedded_attribute2...

Table 34. Example 5: Querying the protection data information for a volum

Component Details

Headers Accept: application/json
Authorization: <auth_cookie>

Request https://1.2.3.4/api/rest/volume?select=id,protection_data

Response
body [

 {
 "id":"3f6208d1-b325-4901-9fc1-9e82d943b857",
 "protection_data":
 {
 "family_id": "3f6208d1-b325-4901-9fc1-9e82d943b857",
 "parent_id": null,
 "source_id": null,
 "creator_type": "User",
 "copy_signature": null,
 "source_timestamp": null,
 "creator_type_l10n": "User",
 "is_app_consistent": null,
 "created_by_rule_id": null,
 "created_by_rule_name": null,
 "expiration_timestamp": null
 }
 },
 {
 "id":"9d102db7-048d-4d24-85c2-28c7a5fc91ee",
 "protection_data":
 {
 "family_id": "9d102db7-048d-4d24-85c2-28c7a5fc91ee",
 "parent_id": null,
 "source_id": null,
 "creator_type": "User",
 "copy_signature": null,
 "source_timestamp": null,
 "creator_type_l10n": "User",
 "is_app_consistent": null,
 "created_by_rule_id": null,
 "created_by_rule_name": null,
 "expiration_timestamp": null
 }
 },
 {
 "id":"f0480b0f-cc6f-431b-9e18-e4b39b2b13e1",
 "protection_data":
 {
 "family_id": "f0480b0f-cc6f-431b-9e18-e4b39b2b13e1",
 "parent_id": null,
 "source_id": null,
 "creator_type": "User",

36 Querying a resource

Table 34. Example 5: Querying the protection data information for a volum (continued)

Component Details

 "copy_signature": null,
 "source_timestamp": null,
 "creator_type_l10n": "User",
 "is_app_consistent": null,
 "created_by_rule_id": null,
 "created_by_rule_name": null,
 "expiration_timestamp": null
 }
 }
]

Querying a resource 37

Creating other types of requests

Topics:

• Creating a resource instance
• Modifying a resource instance
• Deleting a resource instance
• Performing an instance-level resource-specific action
• Performing a class-level action
• Working with asynchronous requests

Creating a resource instance
To create a resource instance, use the following request components:

Table 35. Components of a POST request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Operation POST
URI
pattern /api/rest/<resource_type>

where <resource_type> is the resource type of the instance that you want to create.

Body {
 "argument1":<value>,
 "argument2":<value>,
 "argument3":<value>
 .
 .
 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes
around a string, date-time, or ip-address value.

NOTE: The unique identifier of the new instance is generated automatically by the server.

If the request succeeds, it returns a 201 Created HTTP status code and a create response body. This resource contains the
id attribute for the new resource. If the request does not succeed, the server returns a 4xx or 5xx HTTP status code and a
message entity in the response body.

Creating a local_user

The following request creates an instance of the local_user resource type.

7

38 Creating other types of requests

Table 36. Example of a POST request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request POST https://1.2.3.4/api/rest/local_user

Request
body {

 "name": "User1",
 "password": "myPassword",
 "role_id": "1"
}

Response
body {

 "id": "4"
}

Modifying a resource instance
To modify a resource instance, use the following request components:

Table 37. Components of a PATCH request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Operation PATCH
URI
pattern /api/rest/<resource_type>/<id>

where:
● <resource_type> is the resource type of the instance that you want to modify.

● <id> is the unique identifier of the instance that you want to modify.

There are three varieties of PATCH operations:

● "<attribute>": "new_value" replaces the existing value of the specified attribute with the new value.

● "add_<attribute>": ["<new_value1>", "<new_value2>", ...] This only applies to list-type
attributes, and adds the specified values to an existing list of values.

● "remove_<attribute>": ["<existing value1>", "<existing_value2>"...] This only
applies to list-type attributes, and removes the specified values from an existing list of values.

The Reference content documents which varieties of PATCH are supported for each resource type. For additional
functionality, such as making the request an asynchronous request, you can append one or more request
parameters to the URI.

Body {
 "argument1":<value>,
 "argument2":<value>,
 .
 .

Creating other types of requests 39

Table 37. Components of a PATCH request (continued)

Compone
nt

Details

 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes
around a string, date-time, or ip-address value.

If the request succeeds, it returns a 204 No Content HTTP status code and an empty response body. If the request does not
succeed, the server returns a 4xx or 5xx HTTP status code in the response header and a message entity in the response body.

Examples

Replacing existing values in a volume group

The following request modifies the name and description values for the volume_group resource instance that has an id
of ad09bfa8-f8d8-41b5-96a9-c15c9ebdf214:

Table 38. Example 1 of a PATCH request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request PATCH https://1.2.3.4/api/rest/volume_group/ad09bfa8-f8d8-41b5-96a9-
c15c9ebdf214

Request
body {

 "name":"Storage resources for Marketing",
 "description":"Volumes for storing competitive analaysis information"
}

Response
body

Empty.

Adding additional volumes to a volume group

The following request adds two volumes to the volume_group resource instance that has an id of ad09bfa8-
f8d8-41b5-96a9-c15c9ebdf214:

Table 39. Example 2 of a PATCH request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request PATCH https://1.2.3.4/api/rest/volume_group/ad09bfa8-f8d8-41b5-96a9-
c15c9ebdf214

Request
body {

 "add_volume_ids":["2b2e4948-5f23-495e-8e72-e26c5734c83f",

40 Creating other types of requests

Table 39. Example 2 of a PATCH request (continued)

Compone
nt

Details

 "6eaaa9bd-70e7-4b5f-9aca-fd2731d3c176"]
}

Response
body

Empty.

Removing volumes from a volume group

The following request removes two volumes from the volume_group resource instance that has an id of ad09bfa8-
f8d8-41b5-96a9-c15c9ebdf214:

Table 40. Example 3 of a PATCH request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request PATCH https://1.2.3.4/api/rest/volume_group/ad09bfa8-f8d8-41b5-96a9-
c15c9ebdf214

Request
body {

 "remove_volume_ids":["2b2e4948-5f23-495e-8e72-e26c5734c83f",
 "6eaaa9bd-70e7-4b5f-9aca-fd2731d3c176"]
}

Response
body

Empty.

Deleting a resource instance
To delete a resource instance, use the following request components:

Table 41. Example of a resource instance delete operation

Compone
nt

Details

Headers Accept: application/json
Authorization: <auth_cookie>

If a resource type has request arguments for the DELETE operation, you must also use the following header:

Content-Type: application/json

Operation DELETE
URI
pattern /api/rest/<resource_type>/<id>

where:
● <resource_type> is the resource type of the instance that you want to delete.

● <id> is the unique identifier of the instance that you want to delete.

Creating other types of requests 41

Table 41. Example of a resource instance delete operation (continued)

Compone
nt

Details

For additional functionality, such as making the request an asynchronous request, you can append one or more
request parameters to the URI.

Body For most resource types, the body of a DELETE request is empty. However, if a resource type has request
arguments for the DELETE operation, they are passed as a comma-separated list of standard JSON name:value
pairs.

If the request succeeds, it returns a 204 No Content HTTP status code and an empty response body. If the request does not
succeed, the server returns a 4xx or 5xx HTTP status code in the response header and a message entity in the response body.

Deleting a volume_group instance

The following request deletes the volume_group instance that has an id of 23772434-6373-4748-aa1a-
f4197475812a:

Table 42. Example of a volume group delete operation

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request DELETE https://1.2.3.4/api/rest/volume_group/23772434-6373-4748-aa1a-
f4197475812a

Request
body

Empty.

Response
body

Empty.

Performing an instance-level resource-specific action
Some resource types have operations that let you perform resource-specific actions on resource instances beyond the standard
delete and modify actions. For example, you can use the volume resource type's refresh operation to refresh the contents of
a volume from another volume in the same family.

To perform a resource-specific action on a resource instance, use the following request components:

Table 43. Example of an instance-level resource action

Compone
nt

Details

Headers For operations without request arguments:

Accept: application/json
Authorization: <auth_cookie>

For operations with request arguments:

Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Operation POST

42 Creating other types of requests

Table 43. Example of an instance-level resource action (continued)

Compone
nt

Details

URI
pattern /api/rest/<resource_type>/<id>/<action_name>

where:
● <resource_type> is the resource type of the instance for which you want to perform an action.

● <id> is the unique identifier of the instance for which you want to perform an action.

● <action_name> is the action that you want to perform.

For additional functionality, such as making the request an asynchronous request, you can append one or more
request parameters to the URI.

Body For operations without request arguments:

Empty.

For operations with input data:

{
 "argument1":<value>,
 "argument2":<value>,
 .
 .
 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes
around a string, date-time, or ip-address value.

The success response for an instance-level resource-specific action differs depending on whether the action performed has
output data:

● For actions that do not have output data, a successful request returns a 204 No Content HTTP status code and an
empty response body.

● For actions that have output data, a successful request returns a 200 OK HTTP status code, and the body has the specified
out attributes in an instance resource response body.

If the request does not succeed, the server returns a 4xx or 5xx HTTP status code in the response header and a message entity
in the response body.

Creating a snapshot of a specified volume

The following request creates a snapshot of the volume instance that has an id of a47a6bc8-ad32-4e07-
bd51-15adc831dfee:

Table 44. Example of a snapshot creation request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request POST /api/rest/volume/a47a6bc8-ad32-4e07-bd51-15adc831dfee/snapshot

Request
body

(Optional)

{
 "description": "DB copy before application upgrade"
}

Creating other types of requests 43

Table 44. Example of a snapshot creation request (continued)

Compone
nt

Details

Response
body {

 "id": "57cdb822-490e-4755-b8b3-99bb779b1472"
}

Performing a class-level action
Some resource types have operations that let you perform class-level actions. For example, exchanging SSL certificates with
another PowerStore appliance.

To perform a class-level action, use the following request components:

Table 45. Components of a class-level action

Compone
nt

Details

Headers For operations without request arguments:

Accept: application/json
Authorization: <auth_cookie>

For operations with request arguments:

Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Operation POST
URI
pattern /api/rest/<resource_type>/<action_name>

where:
● <resource_type> is the resource type of the class for which you want to perform an action.

● <action_name> is the action that you want to perform.

For additional functionality, such as making the request an asynchronous request, you can append one or more
request parameters to the URI.

Body For operations without request arguments:

Empty.

For operations with input data:

{
 "argument1":<value>,
 "argument2":<value>,
 .
 .
 .
}

where the comma-separated list contains all required arguments and any optional arguments. Use double quotes
around a string, date-time, or ip-address value.

The success response for a class-level action differs depending on whether the action performed has output data:

● For actions that do not have output data, a successful request returns a 204 No Content HTTP status code and an
empty response body.

● For actions that have output data, a successful request returns a 200 OK HTTP status code, and the body has the specified
out attributes in a class response body.

44 Creating other types of requests

If the request does not succeed, the server returns a 4xx or 5xx HTTP status code in the response header and a message entity
in the response body.

Exchanging SSL certificates

The following request exchanges SSL certificates with another PowerStore appliance:

Table 46. Example of a SSL certificate exchange request

Compone
nt

Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request POST /api/rest/x509_certificate/exchange

Request
body {

 "service": "Management_HTTP",
 "address": "10.244.53.108",
 "port": 8080,
 "username": "user1",
 "password": "myPassword"
}

Response
body

Empty.

Working with asynchronous requests
By default, all REST API requests are synchronous, which means that the client/server connection stays open until the request
completes and the response is returned.

Alternatively, you can make any active management request (one that changes the system rather than just querying it) into
an asynchronous request by adding URL parameter is_async=true to the request URL. Asynchronous requests can be more
reliable than synchronous requests. With an asynchronous request, you start a job, and the server returns an associated job
resource instance almost immediately. You can query the job resource instance when convenient to get the HTTP response
code and response body for the request. If you create a synchronous request and the network connection is lost, or the REST
client or server goes down while the request is processing, there is no way to obtain the request status when it does eventually
complete.

Syntax

As the first parameter on the request URI:

?is_async=true
As a subsequent parameter on the request URI:

&is_async=true

Usage

The following considerations apply to asynchronous requests:

● A valid asynchronous request returns a 202 Accepted HTTP status code and a minimal job resource instance in the
response body.

● An invalid asynchronous request returns immediately with the appropriate error code in the response header and a message
entity in the response body.

Creating other types of requests 45

To view the status of an asynchronous request, retrieve data for the appropriate job resource instance. For
example, if an asynchronous PATCH local_user user request returns a job resource instance with an id of
1b6df699-7083-4440-912c-22e2ed89c530, you can use an instance query to retrieve the asynchronous request data
from this job resource. Query at least the state and response_body attributes. If the state is Completed or Failed,
the response_body contains the error response.

Creating an asynchronous request

The following example uses the is_async=true request parameter on a request to modify an volume_group instance.

Table 47. Example of an asynchronous request

Request component Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request PATCH https://1.2.3.4/api/rest/volume_group/e436abe3-d78e-4d1d-
a349-349368803c59?is_async=true

Request body {
 "description": "Storage resources for the Finance department"
}

Response body {
 "id": "1b6df699-7083-4440-912c-22e2ed89c530"
}

Viewing an asynchronous request

The following example shows the job instance that is associated with the request that is shown above:

Table 48. Example of the job instance associated with the asynchronous request

Request component Details

Headers Accept: application/json
Content-Type: application/json
Authorization: <auth_cookie>

Request GET https://1.2.3.4/api/rest/job/1b6df699-7083-4440-912c-22e2ed89c530?
select=id,description_l10n,state,response_body

Request body Empty.

Response body {
 "id": "1b6df699-7083-4440-912c-22e2ed89c530",
 "description_l10n": "Modify a volume group.",
 "state": "COMPLETED",
 "response_body": null
}

46 Creating other types of requests

Reference content
This section describes the resource types, methods, and attributes in the PowerStore Management REST API, along with other
API information such as datatypes and enumerations.

In addition to the PowerStore REST API Reference Guide on Dell Support, reference materials are also available on the appliance
in several formats:

● Swagger UI—https://<cluster management ip address>/swaggerui
● JSON—https://<cluster management ip address>/api/rest/openapi.json

8

Reference content 47

https://www.dell.com/support

	Dell PowerStore REST API Developers Guide
	Contents
	Overview
	The PowerStore REST API
	Resource-oriented architecture and REST
	JSON data exchange format

	REST request components
	HTTP request headers
	URI patterns
	Request parameters
	REST requests

	REST responses
	Response components
	HTTP and HTTPS response headers
	HTTP status codes
	JSON collection response body
	JSON instance response body
	JSON create response body
	Response with no body
	JSON job response body
	Error response

	JSON encodings
	JSON base value encodings
	JSON list encoding

	Managing a REST API session
	Connecting and authenticating
	Obtaining login session information
	Logging out of the REST API session

	Querying a resource
	Pagination
	Retrieving data for multiple occurrences in a collection
	Retrieving data for a specified resource instance
	Specifying the attributes to return in a query response
	Filtering response data
	Sorting response data
	Including data from a related resource type in a query

	Creating other types of requests
	Creating a resource instance
	Modifying a resource instance
	Deleting a resource instance
	Performing an instance-level resource-specific action
	Performing a class-level action
	Working with asynchronous requests

	Reference content

