

This report will not be used for social proof function in China market.

	Test report No: 6060140.50V1.1
TEST REPORT	
Electromagnetic Com	patibility (EMC)
Identification of item tested	Air Pump
Trademark	N/A
Model and /or type reference	#62056,#62139
Ratings	AC 220-240 V, 110 W
Test Laboratory / address	DEKRA Testing and Certification (Shanghai) Ltd.
	3 F., No. 250 Jiangchangsan Road, Jing'an District, Shanghai City, 200436, China
Applicant's name / address	Bestway (Hongkong) International Ltd
	Suite 713, 7/Floor, East Wing, Tsim Sha Tsui Centre, 66 Mody Road, Kowloon, Hongkong
Test method requested, standard	EN 55014-1:2006+A1:2009+A2:2011
	EN 55014-1:2017;
	EN 55014-2:2015;
	EN 61000-3-2:2014
	EN 61000-3-3:2013
Verdict Summary	IN COMPLIANCE
Tested by (name / position & signature)	Xingyu He
	Test Engineer
Approved by (name / position & signature)	Zuyao Fan
	Project Manager
Date of issue	2020-04-01
Report template No	TRF_EN55014-1_EN55014-2_EMC01 V1.0

INDEX

		۲ ۲	age
Com	petenc	es and Guarantees	4
Gene	eral co	nditions	4
Unce	ertainty	· · · · · · · · · · · · · · · · · · ·	4
Envir	onme	ntal conditions	4
Poss	ible te	st case verdicts	5
Defin	ition o	f symbols used in this test report	5
Abbr	eviatio	ns	5
Docu	iment	History	6
Rem	arks a	nd Comments	6
1	Gene	ral Information	7
	1.1	General Description of the Item(s)	7
	1.2	Environment	8
	1.3	Test data	8
	1.4	Classification according to EN 55014-2	9
2	Desc	ription of Test Setup	10
	2.1	Operating mode(s) used for tests	10
	2.2	Port(s) of the EUT	10
	2.3	Support / Auxiliary equipment / unit / software for the EUT	10
	2.4	Test Configuration / Block diagram used for tests	11
3	Verdi	ct summary section	12
	3.1	Standards	12
	3.2	Deviation(s) from the Standard(s) / Test Specification(s)	12
	3.3	Overview of results	13
4	Emis	sion Test Results	14
	4.1	Conducted disturbance voltage - Mains	14
	4.2	Disturbance power (30 MHz – 300 MHz)	21
	4.3	Radiated electromagnetic disturbances (30 – 1000 MHz)	25
	4.4	Discontinuous disturbance (clicks) on AC power leads	26
	4.5	Harmonic current emissions	27
	4.6	Voltage changes, voltage fluctuations and flicker	30
5	Immu	nity Test Results	32
	5.1	Performance (Compliance) criteria	32
		5.1.1 Performance criteria related to immunity tests	32
		5.1.2 Manufacturer defined performance criteria	32

3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District Shanghai 200436 China TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

6	Identification of the Equipment Under Test	.33
7	Annex 1 – Measurement Uncertainties	.34
8	Annex 2 – Used Equipment	.34
9	Annex 3 – Test Photos	.35

COMPETENCES AND GUARANTEES

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.

UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. Refer to the Annex 1 for furter information.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa – 106 kPa

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.					
Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT.					
Decimal separator used in this report		Comma (,)	\square	Point (.)	

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

- EUT : Equipment Under Test
- QP : Quasi-Peak CAV : CISPR Average AV : Average CDN : Coupling Decoupling Network SAC : Semi-Anechoic Chamber OATS : Open Area Test Site BW : Bandwidth : Amplitude Modulation AM ΡM : Pulse Modulation : Horizontal Coupling Plane HCP VCP : Vertical Coupling Plane $U_{\rm N}$: Nominal voltage
- N/A : Not Applicable
- *N/M* : Not Measured

DOCUMENT HISTORY

Report nr.	Date	Description
6060140.50	2019-10-24	First release.
6060140.50V1.1	2020-04-01	Second release.

REMARKS AND COMMENTS

The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).

The test results relate only to the samples tested.

According to the declaration from manufacturer, both models are identical except the model name

The test results stated in this report of model #62056 are also representative for the others.

1 GENERAL INFORMATION

1.1 General Description of the Item(s)

Description of the item:	Air Pump			
Model / Type number:	#62056,#62139			
Serial number:	N/A			
Trademark:	N/A			
Manufacturer:	Bestway Inflatables & Material Corp			
	No. 3065 Cao An Road , Shanghai 201812 , P. R. China			
Factory GOLEADER INDUSTRIES (JINHUA) CO., LTD.				
	No.618 Wenxi Road, Jinpan Development New Zone, Jinhua, Zhejiang Province, 321025, China.			

Rated power supply:	Voltage and Frequency		Reference poles					
			L2	L3	Ν	PE		
	AC: 220-240 V							
	AC: 100 – 240 V, 50/60 Hz							
	DC: 12 V, 24 V, 12 / 24 V							
	Battery: 6 V							
Rated Power:	110 W							
Clock frequencies:	N/A							
Other parameters:	N/A							
Mounting position:	Table top equipment							
	Wall/Ceiling mounted equipment							
	Floor standing equipment							
	Hand-held equipment							
	Other:							

Intended use of the Equipment Under Test (EUT) The apparatus as supplied for the test is Air Pump, intended for residential and commercial use. These products have no electronic control unit

No	Module/parts of test item	Туре	Manufacturer
1	N/A		

No	Documents as provided by the applicant - Description	File name	Issue date
	N/A		

Modifications to the test item	\square	NI/A	Supplemental information:
during testing:		N/A	Supplemental Information.

Copy of marking plate:

N/A

1.2 Environment

The requirements and standards apply to equipment intended for use in:

\square	Residential (domestic) environment.
\boxtimes	Commercial and light-industrial environment.
	Industrial environment.

1.3 **Test data**

Test Logation	TUV Rheinland (Shanghai) Co., Ltd.		
Test Location	Np.177, 178, Lane 777 West Guangzhong Road, Jing'an District, Shanghai, China		
Date(receive sample)	2018-10		
Date (start test)	2018-10		
Date (finish test)	2018-10		

1.4 **Classification according to EN 55014-2**

The standard EN 55014-2 is subdivided in four categories. For each category, specific immunity requirements are formulated.

· · · ·				
	Category I: Apparatus containing no electronic control circuitry.			
\boxtimes	<u>Examples:</u> Motor operated appliances, lighting toys, track sets without electronic control units, tools, heating appliances, UV and IR radiators and apparatus containing components such as electromechanical switches and thermostats.			
	Electric circuits consisting of passive components (such as radio interference suppression capacitors or inductors, mains transformers and mains frequency rectifiers) are not considered to be electronic control circuitry.			
	<u>Category II:</u> transformer toys, dual supply toys, mains powered motor operated appliances, tools, heating appliances and similar electric apparatus (for example – UV radiators, IR radiators and microwave ovens) containing electronic control circuitry with no clock frequency higher than 15 MHz. (For toys, examples include educational computers, organs, track sets with electronic control units.)			
	Category III: equipment which in normal use, is not connected to a power network and has no cables attached. This category includes apparatus provided with rechargeable batteries, solar or other similar d.c. power sources which can be charged or operated by connecting the apparatus to the mains power. However, this apparatus shall also be tested as an apparatus in category II while it is connected to the mains network.(For toys, examples include musical soft toys, cord-controlled toys and motor-operated electronic toys.)			
	Category IV: All other apparatus covered by the scope of the EN 55014-2 standard.			
<u>Clock frequency:</u> Fundamental frequency of any signal used in the device, excluding those which are solely used inside integrated circuits (IC).				

2 **DESCRIPTION OF TEST SETUP**

2.1 **Operating mode(s) used for tests**

During the tests the following operating mode(s) has(have) been used.

Operating mode	Operating mode description	Used for testing		
		Emission	Immunity	
1	The EUT operates normally.	\boxtimes	\boxtimes	
2				
3				
4				
5				
Supplemental information:				

2.2 Port(s) of the EUT

	Connected to /	Cable				
Port name and description	Termination	Length used	Attached	Shielded		
			during test			
AC input port	AC mains	0.8 m	\boxtimes			
Supplemental information:						

2.3 Support / Auxiliary equipment / unit / software for the EUT

The EUT has been tested with the following auxiliary equipment / unit / software:

Auxiliary equipment / unit / software	Type / Version	Manufacturer	Supplied by			
N/A			Applicant			
			DEKRA			
Supplemental information:						

2.4 **Test Configuration / Block diagram used for tests**

The following test setup / configuration / block diagram has been used during the tests:

3 VERDICT SUMMARY SECTION

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

3.1 Standards

Standard	Year	Description				
EN 55014-1	2017	Requirements for household appliances, electric tools and similar apparatus – Part 1: Emission.				
EN 55016-2-1	2014	Methods of measurement of disturbances and immunity - Conducted disturbance measurements.				
EN 55016-2-2	2010	Methods of measurement of disturbances and immunity – Measurement of disturbance power.				
EN 55016-2-3	2010	Methods of measurement of disturbances and immunity - Radiated disturbance				
+A1	2010	measurements.				
+A2	2014					
EN 61000-3-2	2014	Limits for harmonic current emissions (equipment input current \leq 16 A per				
		phase).				
EN 61000-3-3	2013	Limitation of voltage changes, voltage fluctuations and flicker in public low-				
		voltage supply systems, for equipment with rated current ≤ 16 A per phase and				
		not subject to conditional connection.				
EN 55014-2	2015	Requirements for household appliances, electric tools and similar apparatus -				
		Part 2: Immunity – Product family standard.				
EN 61000-4-2	2009	Electrostatic discharge immunity test.				
EN 61000-4-3	2006	Radiated, radio-frequency, electromagnetic field immunity test.				
+A1	2008					
+A2	2010					
EN 61000-4-4	2012	Electrical fast transient/burst immunity test.				
EN 61000-4-5	2014	Surge immunity test.				
EN 61000-4-6	2014	Immunity to conducted disturbances, induced by radio-frequency fields.				
EN 61000-4-11	2004	Voltage dips, short interruptions and voltage variations immunity tests.				

3.2 **Deviation(s) from the Standard(s) / Test Specification(s)**

The following deviation(s) was / were made from the published requirements of the listed standards:

N/A.

3.3 Overview of results

EMISSION TESTS – EN 55014-1					
Basic standard(s)	Verdict	Remark			
EN 55016 2 1	DV66				
50 KHz – 30 MHz)					
Conducted disturbance voltage at load terminals					
(150 KHz – 30 MHz)					
Conducted disturbance voltage at additional terminals					
EN 55010-2-1	IN/A				
EN 55016-2-2	PASS	See 3)			
EN 55016-2-3	N/A				
EN 55014-1	N/A	See 1)			
	EN 55014-1 Basic standard(s) EN 55016-2-1 EN 55016-2-1 EN 55016-2-1 EN 55016-2-2 EN 55016-2-3 EN 55014-1	EN 55014-1 Basic standard(s) Verdict EN 55016-2-1 PASS EN 55016-2-1 N/A EN 55016-2-1 N/A EN 55016-2-1 N/A EN 55016-2-3 N/A EN 55016-2-3 N/A EN 55016-2-3 N/A			

Supplementary information:

1) Exemptions from click measurements applicable (clause 4.2.3).

2) Not applicable because no test requirements have been specified for DC/battery powered apparatus.

3) According to clause 4.3.4.2 procedure (a) of the CISRP 14-1 standard the EUT is deemed to comply in the frequency range from 300 MHz to 1000 MHz without further measurements.

EMISSION TESTS – EN 61000-3-2, EN 61000-3-3					
Requirement – Test case Basic standard(s) Verdict Remark					
Harmonic current emissions	EN 61000-3-2	PASS			
Voltage changes, voltage fluctuations and flicker	EN 61000-3-3	PASS			

Supplementary information:

1) The EUT is regarded as an "Equipment with rated power of \leq 75 W". According to "Clause 7, Figure 1 - Flowchart for determining conformity" the EUT is deemed to comply with the requirements of the EN 61000-3-2 standard.

2) The EUT is regarded as a professional equipment with a total rated power greater than 1 KW. The test is not applicable.

IMMUNITY TESTS – EN 55014-2							
Requirement – Test case Basic standard(s) Verdict Remark							
Electrostatic discharge	EN 61000-4-2	N/A					
Radio-frequency electromagnetic fields	EN 61000-4-3	N/A					
Fast transients	EN 61000-4-4	N/A					
Surge transient	EN 61000-4-5	N/A					
Injected currents (radio-frequency common mode)	EN 61000-4-6	N/A					
Voltage dips and short interruptions	EN 61000-4-11	N/A					
Supplementary information:							
1) Not applicable because no test requirements have been spe	ecified for DC/battery powered	apparatus.					
2) The equipment is classified as category 1 equipment accord	ling to EN 55014-2; no immuni	ty tests are an	plicable.				

4 EMISSION TEST RESULTS

4.1 Conducted disturbance voltage - Mains VERDICT: PASS

Standard	EN 55014-1
Basic standard	EN 55016-2-1

Limits

Frequency range [MHz]	Limit: QP [dB(μ V) ¹⁾]	Limit: AV [dB(μ V) ¹⁾]	IF BW	Detector(s)	
0,15 - 0,50	66 – 56 ²⁾	59 - 46 ²⁾	9 KHz	QP, CAV	
0,50 - 5,0	56	46	9 KHz	QP, CAV	
5,0 - 30	60	50	9 KHz	QP, CAV	
 ¹⁾ At the transition frequency, the lower limit applies. ²⁾ The limit decreases linearly with the logarithm of the frequency. 					

Performed measurements

Tested terminal(s) / port	\square	AC mains input power	\square	⊠ N ⊠ L1 □		L2		L3		
		DC mains input power	oower 🗌 Positive (+) 🗌 Negati			tive (-))			
Voltage – Mains [V]	230 \	/ac								
Frequency – Mains [Hz]	50 Hz	2								
Test method applied		Artificial mains network	Artificial mains network							
		Voltage probe								
Test setup		Table top Image: Artificial hand applied								
		Floor standing	Other:							
	Refer to the Annex 3 for test setup photo(s).									
	r									
Operating mode(s) used	Mode 1									
Remark										

See next page.

Measurement data	Port unde	r test	AC inpu	ut power			
Operating mode / voltage / frequency us	ed during the tes	d during the test		Mode 1 / 230 Vac / 50 Hz with HC5410M230			
Neutral:							
Level [dBµV]							
70							
No A Hora I III	4						
			J. I. B. B. B. B.				
40							
30 30	Munia and and and and and and and and and an		+		n juu kaada kaan		
20		. Hereine	and the local				
10							
0							
150k 300k 500k	1M 2 Frequency [H	2M 3N [z]	и 5M	7M 10M	30M		
Final quasi-peak m	easurement results:						
Freq	uency Level MHz dBµV	Transd dB	l Limit dBµV	Margin Line dB			
0.1	55000 55.10 85000 42.90	9.7	65.7	10.6 N 15.3 N			
0.4	10000 43.40 65000 44.20	9.8 9.8	57.6 56.6	14.2 N 12.4 N			
0.4 0.6	8000044.200000040.80	9.8 9.8	56.3 56.0	12.2 N 15.2 N			
Final average meas	surement results:						
Freq	uency Level MHz dBµV	Transd dB	l Limit dBµV	Margin Line dB			
0.1	50000 43.40 75000 32.30	9.7	59.0 46.6	15.6 N 14.3 N			
1.0 4.5 6.7	30000 30.40 30000 26.60 65000 27.70	9.8 9.9 9.9	46.0 46.0 50.0	19.4 N 22.3 N			
23.3	50000 13.90	10.2	50.0	36.1 N			
Note: 1. All Readings are performed with Quas 2. Measurement Level = Reading Level -	i-Peak and/or av ⊦ Factor +Cable	/erage Loss.	e measur	ements as nec	essary.		
Remark							

DEKRA Testing and Certification (Shanghai) Co., Ltd. 3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District Shanghai 200436 China

Measurement data	Port under test	AC input power	
Operating mode / voltage / frequency use	d during the test	Mode 1 / 230 Vac / 50 Hz,w RW05	th XZ5410S23-
Neutral:			
70			-
60			
50			
Muniter 1			
40			
30		The second se	
	man and the second and the	Land Contraction of the Land Contraction of the Con	
20	- Nellin		
10			-
o			
150k 300k 500k	1M 2M Frequency [Hz]	3M 5M 7M 10M 30M	
Frequenc MH	y Level Trans z dBµV dl	Limit Margin Line dBµV dB	
0.15500	0 57.80 9.7	65.7 7.9 N	
1.15000	0 42.40 9.1	56.0 13.6 N	
1.19500	0 42.40 9.1	56.0 13.6 N	
1.24000	0 42.40 9.1	56.0 13.6 N	
Final average measurem	0 42.10 9.0	50.0 IS.9 N	
Frequence	v Lovel Trans	Limit Margin Line	
MH	z dBµV dl	dBµV dB	
0.15000	0 47.20 9.	59.0 11.8 N	
1.09500	0 29.50 9.1	46.0 16.5 N	
2.72000	0 27.50 9.1	46.0 18.5 N	
6.96000 10.62000	0 20.60 10.0	50.0 25.8 N 50.0 29.4 N	
Note:			
1. All Readings are performed with Quasi	-Peak and/or averag	e measurements as necessar	/.
2. Measurement Level = Reading Level +	Factor +Cable Loss		
-			
Demork			

DEKRA Testing and Certification (Shanghai) Co., Ltd. 3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District Shanghai 200436 China

Measurement data Port under test AC input power Mode 1 / 230 Vac / 50 Hz,with XZ5410S23-Operating mode / voltage / frequency used during the test **RW15** Neutral: Level [dBµV] 70.0 Limits 60.0 C14HAG 50.0 40.0 Transducer ENV216 N 30.0 Traces PK+ 1 Mar AV 20.0 10.0 5.0 1 MHz 150 kHz 10 MHz 30 MHz Final Quasi-peak measurement result: Delta Limit Frequency Level Limit (dBµV) (dBµV) (MHz) (dB) -6.74 0.1815 57.68 64.42 -16.79 39.21 0.7935 56.00 1.1355 41.19 56.00 -14.81 4.893 36.05 56.00 -19.95 6.765 41.18 60.00 -18.82 20.5125 28.15 60.00 -31.85 Final Average measurement result: Dolta Limit Т Limit The second Lovel Т

Frequency	Level	Linnt	Detta Linnt
(MHz)	(dBµV)	(dBµV)	(dB)
0.1545	48.53	58.68	-10.15
0.5055	29.12	46.00	-16.88
1.0995	27.50	46.00	-18.50
4.92	23.89	46.00	-22.11
6.189	28.48	50.00	-21.52
22.551	15.77	50.00	-34.23

Note:

1. All Readings are performed with Quasi-Peak and/or average measurements as necessary.

2. Measurement Level = Reading Level + Factor +Cable Loss.

Remark ----

PASS

VERDICT:

4.2 **Disturbance power (30 MHz – 300 MHz)**

Standard	EN 55014-1
Basic standard	EN 55016-2-2

Limits

Frequency range [MHz]	Limit: QP [dB(pW)]	Limit: AV [dB(pW)]	IF BW	Detector(s)
30 - 300	45 – 55 ¹⁾	35 – 45 ¹⁾	120 KHz	QP, CAV
	Margin			
200 - 300	0 – 10 1)		120 KHz	QP, CAV
¹⁾ The limit increases linearly with the frequency.				

Performed measurements

Port(s) under test							
AC mains input power	AC mains input power		Load				Control
Other:			Other:				Other:
Voltage – Mains [V] 230 \			Vac				
Frequency – Mains [Hz]	50 Hz	50 Hz , 60 Hz					
Test setup		☐ Floor standing			ing		
		Other:					
	Refe	to the	Annex 3 for test se	tup ph	oto(s).		
Conditions for exemption		Limits" reduced by "Margin" applied and passed			ssed		
300 MHz	\square	Maximum clock frequency < 30 MHz					
Operating mode(s) used	Mode	Mode 1					
Remark							

See next page.

DEKRA Testing and Certification (Shanghai) Co., Ltd. 3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District Shanghai 200436 China

DEKRA Testing and Certification (Shanghai) Co., Ltd. 3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District Shanghai 200436 China

DEKRA Testing and Certification (Shanghai) Co., Ltd.

3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District Shanghai 200436 China

4.3 Radiated electromagnetic disturbances (30 – 1000 MHz) VERDICT: N/A

Standard	EN 55014-1
Basic standard	EN 55016-2-3
Test method	Antenna method according to EN 55016-2-3 standard.

Limits

Frequency	l		Detector			
[MHz]	@3 m.	@5 m.	@10 m.		Delector	
30 - 230	40	36	30	120 KHz	QP	
230 - 1000	47	43	37	120 KHz	QP	
¹⁾ At the transition frequency, the lower limit applies.						

Performed measurements

Port under test	Enclo	Enclosure		
Voltage – Mains [V]	DC-4	.8V(for working mode), DC 5V(for charging mode)		
Frequency – Mains [Hz]				
Test method applied	\bowtie	OATS or SAC with measurement distance [m]: 3 m.		
		OATS or SAC with measurement distance [m]: 5 m.		
		OATS or SAC with measurement distance [m]: 10 m.		
Test setup	\boxtimes	Equipment on a table of 80 cm height		
		Equipment on the floor (insulated from ground plane)		
		Other:		
	Refer to the Annex 3 for test setup photo(s).			
Operating mode(s) used	Mode 1			
Remark				

4.4 Discontinuous disturbance (clicks) on AC power leads VERDICT: N/A

Standard	EN 55014-1		
Frequency [MHz]	Limit: QP [dB(µV)]	IF BW	Detector
0,15	66	9 KHz	Quasi-Peak (QP)
0,50	56	9 KHz	Quasi-Peak (QP)
1,40	56	9 KHz	Quasi-Peak (QP)
30,0	60	9 KHz	Quasi-Peak (QP)

Performed measurements

Voltage – Mains [V]	230 Vac			
Frequency – Mains [Hz]	50 Hz , 60 Hz			
lest method applied	Artificial mains network			
	U Voltage probe			
Test setup	Table top Floor standing			
	Other:			
	Refer to the Annex 3 for test setup photo(s).			
Operating mode(s) used	Mode 1			
Remark				

Reason for n	ot		The a	nplituc	les of	the observe	ed dist	urbance	es were	all be	ow th	e limit for
performing th	e test	₩ 	continuous disturbance, these are not considered to be clicks.									
Measuremen	t results	X	Neutra	ŀ	\bowtie	Line 1	E] Line	-2		Line	3
Froqueney			First M	easure	ement:	Determinatio	n of the	ə limit L	_{Գ –} Quas	i-peak		
(MHz)	Limit <i>L</i> (dBµV)	Number of short clicks		Number of long clicks		Number of clicks — <i>N</i> ₁	Time of meas. (min.)		Click rate N	Increased limit (dB)		Increased Limit-L ₉
0,15	66		θ	(Ð	θ	12	20	5	1	6	82
0,5	56		0 6		÷	θ	1	20	5	16		72
1,4	56		θ θ		÷	θ	120		5	16		72
30	60		0 €		Ð	θ	120		5	16		76
	The calcul	ated c	lick rate	N is n	ot mor	e than 5 time	s per n	ninute a	and all the	clicks clicks	are cl	assified as
\bowtie	short (t ≤	<u>10 n</u>	ns). Thu	s, the	EUT	is deemed	t o com	ply wit	h the lim	nits wit	hout a	any further
	measurem	ent at	an incre	ased I	imit.							
Froqueney			Secon	d meas	sureme	ent with Limit	= L_q (L	lpper q	uartile me	thod):		
(MHz)	Limit Lq (dBµV)	Num	ber of c - N ₂	icks	4	Number of au	thorize	d clicks	<u>N2 ≤N1/⁄</u>	1	2	Verdict
0,15												
0,5												
1,4												
30												
Supplementa	ry informati	<u>on:</u>										

4.5 Harmonic current emissions

VERDICT: PASS

Standard	EN 610	EN 61000-3-2				
Exlusions		Arc welding equipment intended for professional use.				
(For these categories of		System(s) with nominal voltage(s) less than 220 V_{AC} (line-to-neutral).				
equipment, limits are not specified in the EN 61000-		Equipment with rated power of \leq 75 W (other than lighting equipment).				
3-2 standard)		Professional equipment with total rated power > 1 kW.				
		Symmetrically controlled heating elements with a rated power \leq 200 W.				
		Independent dimmers for incandescent lamps with rated power \leq 1 kW.				

Classific	cation						
\square	Class A	All app	II apparatus not classified as Class B, C or D				
	Class B	Portab	Portable tools, arc welding equipment which is not professional equipment.				
			Lighting equipment with active input power > 25 W				
	Class C		Lighting equipment with active input power ≤ 25 W (First requirement, Table 3 column 2)				
			Lighting equipment with active input power ≤ 25 W (Second requirement)				
	Class D	Persor or mo	Personal computers, television receivers, refrigerators and freezers having one or more variable-speed drives to control compressor motor(s).				

Performed measurements

Port under test	AC ma	AC mains power input							
Voltage – Mains [V]	230 Va	230 Vac							
Frequency – Mains [Hz]	50Hz	50Hz							
Observation peroid		6.5 min.	\boxtimes	2.5 min.		Other:			
Version of measurement		EN 61000-4-7:2002 + AM1:2009 (IEC 61000-4-7:2002+AM1:2008)							
EN / IEC61000-4-7 (Cl. 7)		EN 61000-4-7:1991							
Control principle used in		Comply with the	e require	ements of the Claus	se 6.1 (I	EN / IEC 61000-3-2).			
the EUT		Not comply with the requirements of the Clause 6.1 (EN / IEC 61000-3-2).							
Operating mode(s) used	Mode 1								
Remark									

See next page.

DEKRA Testing and Certification (Shanghai) Co., Ltd. 3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District Shanghai 200436 China

ating mode	/ voltage / freque	ency used durin	g the test	Mode	1 / 230 Vac /	50 Hz			
n HC5410M2	30								
Fundamental current I1: 0.495A; Power factor: 0.985; Active input power: 112.8W.									
Harmonic	Result (avg.)	100% limit	Result (max	.) 1	50% limit	Result			
order	(A)	(A)	(A)		(A)	Result			
2	0.002	1.080	0.002		1.620	Pass			
3	0.066	2.300	0.069		3.450	Pass			
4	0.001	0.430	0.002		0.645	Pass			
5	0.002	1.140	0.003		1.710	Pass			
6	0.001	0.300	0.001		0.450	Pass			
7	0.003	0.770	0.004		1.155	Pass			
8	0.001	0.230	0.002		0.345	Pass			
9	0.002	0.400	0.002		0.600	Pass			
10	0.001	0.184	0.001		0.276	Pass			
11	0.001	0.330	0.001		0.495	Pass			
12	0.001	0.153	0.002		0.230	Pass			
13	0.001	0.210	0.001		0.315	Pass			
14	0.001	0.131	0.001		0.197	Pass			
15	0.001	0.150	0.001		0.225	Pass			
16	0.001	0.115	0.001		0.173	Pass			
17	0.001	0.132	0.001		0.199	Pass			
18	0.001	0.102	0.001		0.153	Pass			
19	0.001	0.118	0.001		0.178	Pass			
20	0.001	0.092	0.001		0.138	Pass			
21	0.001	0.107	0.001		0.161	Pass			
22	0.001	0.084	0.001		0.125	Pass			
23	0.001	0.098	0.001		0.147	Pass			
24	0.001	0.077	0.001		0.115	Pass			
25	0.001	0.090	0.001		0.135	Pass			
26	0.000	0.071	0.001		0.106	Pass			
27	0.001	0.083	0.001		0.125	Pass			
28	0.001	0.066	0.001		0.099	Pass			
29	0.001	0.078	0.001		0.116	Pass			
30	0.000	0.061	0.001		0.092	Pass			
31	0.000	0.073	0.001		0.109	Pass			
32	0.000	0.058	0.001		0.086	Pass			
33	0.000	0.068	0.001		0.102	Pass			
34	0.000	0.054	0.000		0.081	Pass			
35	0.000	0.064	0.000		0.096	Pass			
36	0.000	0.051	0.000		0.077	Pass			
37	0.000	0.061	0.000		0.091	Pass			
38	0.000	0.048	0.001		0.073	Pass			
39	0.000	0.058	0.000		0.087	Pass			
40	0.000	0.046	0.000		0.069	Pass			

asurement da	ata		Port under test	AC input power				
erating mode /	/ voltage / freque	ncy used duri	ng the test	Mode 1 / 230 Va	c / 50 Hz			
n XZ5410S23-	RW05							
Equipment ca	tegory: Class A:	Test voltage:	AC 229,43V, 5	0Hz				
Fundamental	current I1: 0 464	A: Power fac	tor: 0.985: Activ	e input nower: 1	05.8W			
Harmonic Result (avg.) 100% limit Result (max.) 150% limit								
order	(A)	(A)	(A)	(A)	Result			
2	0.001	1.080	0.001	1.620	Pass			
3	0.058	2.300	0.062	3.450	Pass			
4	0.001	0.430	0.001	0.645	Pass			
5	0.002	1.140	0.002	1.710	Pass			
6	0.001	0.300	0.001	0.450	Pass			
7	0.002	0.770	0.003	1,155	Pass			
8	0.001	0.230	0.001	0.345	Pass			
9	0.001	0.400	0.002	0.600	Pass			
10	0.001	0.184	0.001	0.276	Pass			
11	0.001	0.330	0.001	0.495	Pass			
12	0.001	0.153	0.001	0.230	Pass			
13	0.000	0.210	0.000	0.315	Pass			
14	0.001	0.131	0.001	0.197	Pass			
15	0.000	0.150	0.000	0.225	Pass			
16	0.001	0.115	0.001	0.173	Pass			
17	0.000	0.132	0.000	0.199	Pass			
18	0.000	0.102	0.000	0.153	Pass			
19	0.000	0.118	0.000	0.178	Pass			
20	0.000	0.092	0.000	0.138	Pass			
21	0.000	0.107	0.000	0.161	Pass			
22	0.000	0.084	0.000	0,125	Pass			
23	0.000	0.098	0.000	0.147	Pass			
24	0.000	0.077	0.000	0.115	Pass			
25	0.000	0.090	0.000	0.135	Pass			
26	0.000	0.071	0.001	0,106	Pass			
27	0.000	0.083	0.000	0.125	Pass			
28	0.000	0.066	0.001	0.099	Pass			
29	0.000	0.078	0.000	0,116	Pass			
30	0.000	0.061	0.000	0.092	Pass			
31	0.000	0.073	0.000	0.109	Pass			
32	0.000	0.058	0.000	0.086	Pass			
33	0.000	0.068	0.000	0.102	Pass			
34	0.000	0.054	0.000	0.081	Pass			
35	0.000	0.064	0.000	0.096	Pass			
36	0.000	0.051	0.000	0.077	Pass			
37	0.000	0.061	0.000	0.091	Pass			
38	0.000	0.048	0.000	0.073	Pass			
39	0.000	0.058	0.000	0.087	Pass			
40	0.000	0.046	0.000	0.069	Pass			

Remark ----

4.6 Voltage changes, voltage fluctuations and flicker

VERDICT: PASS

Standard	EN 61000-3-3
----------	--------------

Limits

Pst (Short term flicker)	\square	≤ 1		Not Applicable				
PLT (Long term flicker)	\square	≤ 0,65		Not Applicable				
dc (Relative Voltage change)	\square	≤ 3 , 3 %		Not Applicable				
T _{MAX} (Maximum time duration)	\square	500ms		Not Applicable				
d _{MAX} (Max. voltage change)	\square	≤ 4%		6%				
		7%		Not Applicable				
Supplemental information:	Supplemental information:							

Performed measurements

Reason for not performing the measurement(s)		Tests are not necessary because the EUT is unlikely to produce significant voltage fluctuations or flicker (clause 6.1).						
Port under test	AC Ma	ins power inp	ut					
Voltage – Mains [V]	230 Va							
Frequency – Mains [Hz]	50Hz							
Test method		Flickermeter according EN / IEC 61000-4-15:2011						
		Simulation (Clause	4.2.3 of EN / IEC 6	1000-3-	3)		
		Analytical m	ethod (Clause 4.2.4 of EN	/ IEC 6′	1000-3-3)		
		Use of $P_{st} =$	1 curve	(Clause 4.2.5 of El	N / IEC	61000-3-3)		
Observation peroid		10 min.		120 min.		Other:		
		24 times switching according to Annex B						
Operating mode(s) used	Mode ²	1						
Remark								

See next page.

Measurement data	Port under test	AC input power
Operating mode used during the test	Mode 1 / 230 Vac	/ 50 Hz

Results

Table 4: Voltage fluctuations and flicker measurement results for #62056 withHC5410M230

	d_c	d_{max}	T_{max}	P_{st}	P_{lt}
Limits	3.3%	7%	500ms	N/A	N/A
Result	0%	1.06%	0ms	-	-

Table 5: Voltage fluctuations and flicker measurement results for #62056 withXZ5410S23-RW05

	d_c	d_{max}	T_{max}	P_{st}	P_{lt}
Limits	3.3%	7%	500ms	N/A	N/A
Result	0%	0.32%	0ms	-	-

5 **IMMUNITY TEST RESULTS**

5.1 **Performance (Compliance) criteria**

[According to EN 55014-2 (CISPR 14-2)]

<u>Performance criteria A</u>: The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonably expect from the apparatus if used as intended.

<u>Performance criteria B</u>: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. During the test, degradation of performance is allowed however no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonable expect from the apparatus if used as intended.

<u>Performance criteria C :</u> Temporary loss of function is allowed provided the function is self- recoverable or can be restored by the operation of the controls or by any operation specified in the instruction for use.

5.1.1 **Performance criteria related to immunity tests**

Immunity test	Performance criteria
Electrostatic discharge	В
Radio-frequency electromagnetic fields	А
Fast transients	В
Surge transient	В
Injected currents (radio-frequency common mode)	А
Voltage dips and short interruptions	С

5.1.2 Manufacturer defined performance criteria

Not provided.

6 **IDENTIFICATION OF THE EQUIPMENT UNDER TEST**

EUT PHOTOS

7 ANNEX 1 – MEASUREMENT UNCERTAINTIES

Expanded : 3.39dB measurement uncertainty (*k*=2) Expanded measurement uncertainty (*k*=2) : 4.32dB

8 ANNEX 2 – USED EQUIPMENT

No.	Equipment/software name	Model	Serial no./	Cal. due date
			software version	
1.	3m modified semi-anechoic chamber	SAC3	FJ129002	04.02.2019
2.	EMI test receiver	ESCI	100280	01.11.2019
3.	Bilog antenna	CBL 6112D	40530	13.02.2020
4.	EMC measurement software	EMC32	10.01.00	N/A
5.	Barometer	DYM3	08102717	03.04.2021
6.	ESD generator	NSG 435	5506	21.06.2019
7.	Fully Anechoic Chamber	FAC3plus	FJ139001	24.07.2019
8.	Signal Generator	SMR20	101393	02.11.2020
9.	Power Amplifier	80RF1000-30	1077138	01.11.2019
10.	Average Power Sensor	NRP6AN	101102	13.01.2019
11.	Average Power Sensor	NRP6AN	101103	13.01.2019
12.	Broadband Field Meter	NBM-520	C-0120	05.07.2019
13.	E-field Probe	EF1891	A-0387	05.07.2019
14.	EMS Antenna	HL 046	100039	N/A

9 ANNEX 3 – TEST PHOTOS

Conducted disturbance voltage

Harmonic current emissions Voltage changes, voltage fluctuations and flicker

End of the report